Special Robotics Seminar: Jonathan E. Clark, "Towards Agile Legged Robots"

Monday, May 22, 2017
11:00 a.m.
2168 AV Williams
Ania Picard
301 405 4358
appicard@umd.edu

Special Robotics Seminar

Towards Agile Legged Robots that Rapidly Run and Climb

Jonathan E. Clark
Associate Professor
Department of Mechanical Engineering
The Florida A&M University – Florida State University College of Engineering

Host
Sarah Bergbreiter 

Abstract
Finely tuned robotic limb systems that explicitly exploit their body’s natural dynamics have begun to rival specific performance criteria, such as speed over smooth terrain, of the most accomplished biological systems. The earliest successful robot implementations however, used only very specialized designs with a very limited number of active degrees of freedom. While more flexible, higher degree-of-freedom designs have been around for some time they have usually been restricted to comparatively slow speeds or manipulation of light-weight objects. The design of fast, dynamic multi-purpose robots has been stymied by the limitation of available mechanical actuators and the complexity of the design and control of these systems. This talk will describe recent efforts to understand how to effectively design robotic limbs to enable dynamic motions in multiple modalities, specifically high-speed running on horizontal and vertical surfaces.

Biography
Jonathan Clark received his BS in Mechanical Engineering from Brigham Young University and his MS and PhD from Stanford University. Dr. Clark worked as an IC Postdoctoral Fellow at the GRASP lab at the University of Pennsylvania, and is currently an associate professor at the FAMU/FSU College of Engineering in the Department of Mechanical Engineering. During Dr. Clark’s career, he has worked on a wide range of dynamic legged robotic systems including the Sprawl and RHex families of running robots, as well as the world’s first dynamical and fastest legged climbing robot Dynoclimber. In 2014, he received an NSF CAREER award for work on rotational dynamics for improved legged locomotion. His recent work has involved the development of multi-modal robots that can operate in varied terrain by running, climbing and flying. He currently serves as the associate director of the Center of Intelligent Systems, Control, and Robotics (CISCOR) and the director of the STRIDe lab.

 

remind we with google calendar

 

April 2024

SU MO TU WE TH FR SA
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
Submit an Event