Clark School Home UMD

ISR News Story

Kedem receives NSF grant for semiparapetric regression with random covariates

ISR-affiliated Professor Ben Kedem (Math) has received a three-year, $100K NSF grant for An Approach to Semiparametric Regression with Random Covariates.

Given multiple multivariate data sources, each represented by an unknown multivariate distribution, the investigator proposes an approach to regression analysis based on relationships between semiparametric estimates of these multivariate distributions. Resulting from this are regression estimates expressed as estimates of the conditional expectation of a response given its covariates, for each source. The investigator plans to study the statistical properties of the regression estimates, associated diagnostic tools, the applicability and computability of the method using real data, and compare the method to multiple and kernel regression methods.

A basic statistical problem, referred to as regression, is to estimate a relationship between a dependent variable, called the response, and corresponding independent variables, called the predictors or covariates. Most often this is done using a single data source. In many cases, however, multiple data sources are available such as different groups of patients and a control group, data sets from many surveillance sensors, multiple surveillance sources from land, sea, and space, or multiple time records. The existence of multiple data sources motivates a generalization. The investigator will study a novel approach to regression based on multiple data sources, by combining or fusing the data from all sources as to increase the precision of all estimates, and by studying the joint statistical behavior of all sources. Potentially the approach may impact regression analysis in general, as well as forecasting of such time series as unemployment, commodity prices, and the course of a moving object given covariate information, whenever multiple data sources are available. The investigator plans to compare the approach with existing regression methods both theoretically and by data analysis using real data.

Related Articles:
Statistical Data Fusion: new book by Kedem, De Oliveira, Sverchkov
Kedem will be Fulbright Specialist this fall
Benjamin Kedem is co-investigator on $5.4M USDA food-safety grant

September 1, 2010

Prev   Next



Current Headlines

Coelho, Austin and Blackburn win best paper award at ICONS 2017

Ryzhov promoted, granted ISR/Smith School joint appointment

Miao Yu named Maryland Robotics Center director

Decade of TMV research leads to never-before-seen microsystems for energy storage, biosensors and self-sustaining systems

Former ISR postdoc Matthew McCarthy earns tenure at Drexel University

New TMV supercapacitor work featured in Nanotechweb article

Jonathan Fritz promoted to Research Scientist

ISR postdoc helps develop 'nanosponge' that erases and repairs incredibly small errors

ECE Professors Abshire, Goldsman, and Newcomb Participate in ISCAS 2017

Sandborn Awarded ASME Kos Ishii-Toshiba Award

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar