Clark School Home UMD

ISR News Story

Michael Rotkowitz wins NSF CAREER Award

Assistant Professor Michael Rotkowitz (ECE/ISR) is the recipient of a 2014 National Science Foundation Faculty Early Career Development (CAREER) Award for "Decentralization and Parsimony for Implementable Control of Massively Interconnected Systems." The five-year award is worth $400,000.

About the award
The advent of complex interconnected systems has created a need to design and analyze controllers that can observe information from only a small portion of a network but may ultimately affect a large portion of the network. This includes smart building management, multi-vehicle systems and convoys, irrigation networks, large array telescopes, and the power distribution grid.

Developing these kinds of controllers is a key challenge in many cyber-physical systems problems. Conventional controls analysis assumes that one centralized decision-maker can access all available measurements, and determine the usage of all possible means of actuation. Most methods of design and analysis are extremely fragile to this assumption, and break down when such centralization is not possible or is not desired, leading to the field of decentralized control.

There is currently an enormous disconnect in decentralized control between celebrated theoretical advances and the concepts that are used for implementation, or even for computation. This is true of both recent advances and more classical results. Rotkowitz’s project pursues the key reasons for this disconnect, along with other impending barriers to the systematic implementation of decentralized control theory, particularly those which will become disabling when applied to massive systems. It undertakes theoretical investigations targeted to advance the field in a manner from which those barriers can be eliminated, along with much farther-reaching benefits, further coupled with computational and algorithmic investigations designed to parlay past and future advances into enabling technologies for sensitive applications including those listed above.

Rotkowitz’s research will produce a novel synthesis of the theory and methods of parsimonious recovery, which has undergone dramatic recent developments, with both the classical results and modern advances in decentralized control. It will further broaden the applicability of elegant and useful aspects of optimization theory to classes of problems that are paramount for the main scope of the project. The fundamental advances pursued in optimization and estimation have the potential to be of use much more broadly and to impact many other fields. This project further seeks to make broad impacts outside of its primary domain through collaborations with industry and with experimentalists, and through the creation of software tools for widespread use by non-experts.

The NSF CAREER program fosters the career development of outstanding junior faculty, combining the support of research and education of the highest quality and in the broadest sense.

Related Articles:
New research will help cyber-physical systems understand human activities
John Baras gives invited lecture at workshop on control of CPS systems
Sarah Bergbreiter wins NSF CAREER Award
Aneesh Raghavan wins Ann G. Wylie Dissertation Fellowship
Dipankar Maity to receive Outstanding Graduate Assistant Award from UMD Graduate School
Alumnus Fumin Zhang promoted to full professor at Georgia Tech
President Obama names Michael Rotkowitz a recipient of the Presidential Early Career Award for Scientists and Engineers
Rance Cleaveland part of 'CyberHeart' cyber-physical systems grant
Alumna Jing Yang wins NSF CAREER Award
Former ISR postdoc Matthew McCarthy wins NSF CAREER Award

February 7, 2014

Prev   Next



Current Headlines

C.D. Mote, Jr. Delivers Roy V. Wright Lecture

Stephen Trimberger in residence as ISR visiting research engineer

Brin Family Prize Celebrates Student Innovation

Alumnus Ravi Tandon Receives 2018 Keysight Early Career Professor Award 

Alum Mingyan Liu is PI for Multiscale Network Games of Collusion and Competition MURI

Haptic Safety for Unmanned Vehicles

Three ISR faculty receive UMD Brain and Behavior Initiative seed grants

Aneesh Raghavan wins Ann G. Wylie Dissertation Fellowship

Book edited by Ghodssi, Lin in top 25 percent of most downloaded Springer eBooks

Why a robot can't yet outjump a flea

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar