
ABSTRACT

Title of Thesis: SEMANTIC FOUNDATIONS FOR FORMALIZING
BRAIN CANCER PROFILES

Joel Abraham
Master of Science, 2019

Thesis directed by: Professor Mark Austin
Department of Civil and Environmental Engineering
and Institute for Systems Research

With the advent of whole-genome DNA sequencing technologies, tailoring of

medical treatment to individual patients based on their genetic makeup has become

the vanguard of modern medicine. One such area that can benefit from individu-

alized medicine is that of brain and other Central Nervous System (CNS) cancers.

The prognosis of malignant brain cancers is among the worst due to the hetero-

geneity and complexity of these tumors and their micro-environment. We present

a framework that combines data mining and machine learning techniques with se-

mantic approaches for building a clinically-relevant knowledge base of brain cancer

profiles. We construct clusters of patients based on the similarity of their profiles

using the k-means clustering algorithm and extract relevant molecular attributes

of these clusters to classify instances of the clusters. We create a semantic model

with ontologies, rule checking and reasoning, to enable rational therapeutic regimen

selection. Finally, we lay the foundation to incorporate this framework into a digital

twin architecture of a patient.
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Glossary of Terms

This glossary provides definitions of key terms employed in this work:

DataType Property: DataType Property defines the relation between instances

of classes and literal values, i.e., String using the Protg tool.

Description logic: (DL) is a family of logic-based knowledge representation lan-

guages that can be used to represent the terminological knowledge of an ap-

plication domain in a structured way.

DNA: Deoxyribonucleic acid. A double helix of genetic information vital to the

development, growth and function of living organisms.

Extended Markup Language (XML): The extensible Markup Language pro-

vides the fundamental layer for representation and management of data on the

Web.

Individual: Is a semantic web terminology that represents an instance of a class

in the ontology.

Jena: Jena is an open source Java framework for building Semantic Web and

linked data applications.

Jena Rules: Jena Rules is an inference (reasoning) engine that plugs into Jena.

Model-Based Systems Engineering: Model-based systems engineering (MBSE)

is the formalized application of modeling to support system requirements, de-
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sign, analysis, verification and validation activities beginning in the concep-

tual design phase and continuing throughout development and later life cycle

phases (INCOSE-TP-2004-004-02, Version 2.03, September 2007).

mRNA: Messenger RNA. A subset of the family of RNA molecules which carries

genetic information from DNA to the ribosome for protein production.

NCI: National Cancer Institute. The US government’s principal agency for cancer

research.

Neo4J: Graph Database management system developed by Neo4j, Inc.

No-SQL: Not Only SQL databases. A new paradigm of database management

deviating from relational databases. Ideal for large distributed data.

Ontology: A model that describes what entities exist in a design domain, and

how such entities are related.

Ontology Class: A placeholder for an entity in the system design. An ontology

class may have some dataType or objectType properties.

Ontology Instance: An ontology instance is a specific realization of any ontology

class object. An object may be varied in a number of ways. Each realized

variation of that object is an instance. The creation of a realized instance is

called instantiation.

ObjectType Property: ObjectType Property defines the relation between in-

stances (individuals) of two classes in semantic web terminology.
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Ontology Web Language: The Web Ontology Language (OWL) is a knowledge

representation languages for defining ontologies.

Reasoner (Rule Engine): A semantic reasoner, reasoning engine, rules engine,

or simply a reasoner, is a piece of software able to infer logical consequences

from a set of asserted facts or axioms.

Reasoning: To infer new statements based on set of asserted facts in the ontology.

Resource Description Framework (RDF): a model for encoding semantic re-

lationships between items of data so that these relationships can be interpreted

computationally.

Rule Checking: A mechanism that ensures existing data in the ontology is con-

sistent with rules defined over the ontology. A rule engine performs this task.

Semantic Web: Refers to W3Cs vision of the Web of linked data.

SQL: Structured Query Language. Standard language used to communicate with

relational databases.

SysML: The Systems Modeling Language (SysML) is a graphical modeling lan-

guage used to define models of systems structure and system behavior.

TCGA: The Cancer Genome Atlas. A database of cancer genomics data.

Weka: Waikato Environment for Knowledge Analysis. An open-source suite

of data mining and machine learning tools developed by the University of

Waikato.
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Chapter 1: Complexities of Cancer

1.1 Problem Statement

1.1.1 Cancer: Aberrant Genes

Cancer is a class of diseases characterized by uncontrollable division of abnor-

mal cells. Cancers can develop in nearly all organs and tissues in the body and

can proliferate rapidly forming metastases in secondary sites in the body. Cancer is

the second leading cause of death behind only heart disease; in 2018, an estimated

1, 735, 350 new cases of cancer were diagnosed in the United States [36]. With ad-

vances in medicine, cancer death rates have slowly decreased at an average rate of

1.6% per year over the past fifteen years [36], however much work remains in tackling

the complexities of cancer.

Cancer is characterized as a genetic disease: it is caused by (inborn or acquired)

changes to genes that control the way cells in our bodies grow and divide. Genes are

the basic unit of heredity and contain information necessary for making proteins –

the building blocks and work force of the cells in the body. Genes are parts of long

molecules called Deoxyribonucleic Acid (DNA) which are composed of nucleotides

and are packaged into structures called chromatin and chromosomes. The process
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of reading genes to form proteins involves several steps and is illustrated in Figure

1.1: DNA undergoes transcription to messenger Riboncleic Acid (mRNA), which is

then translated to amino acid chains which fold to make a multiplicity of complex

three-dimensional proteins. Proteins are involved in most cellular functions in the

body ranging from cell signaling to combating viruses and bacteria.

Figure 1.1: Schematic of DNA to protein transformation in cells.

Alterations or mutations in DNA can a↵ect the structure, function and amount

of proteins in cells, which in turn can lead to transformation of normal cells to

cancerous ones. Normal cells are programmed to develop, divide, and die at tissue-

specific intervals. Cancer cells on the other hand develop the ability to resist cell-

death signals, or proliferate at faster rates than normal cells of their tissue of origin.

While the body has several mechanisms for guarding against such growths, if a

su�cient number of such cells escape these guards the result leads to formation of

cancerous growths and metastases, as shown in in Figure 1.2.

Not all genetic alternations are detrimental: in fact, genetic variation is what
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Figure 1.2: Di↵erentiation and metastasis of cancer cells.

enables evolution of species and makes us individuals. Two main classes of ge-

netic alterations can lead to cancerous growths: changes that a↵ect so-called tumor-

suppressor genes which produce proteins that guard against abnormal growth, and

changes that create so-called oncogenes which lead to creation of proteins with ab-

normal structure that may, for example, lead to abnormal turning-on of the signal

for the cells to grow and divide. Once aberrant cells develop, they may accumulate

more genetic changes which further lead to faster growth and aggressive behavior.

Each person’s cancer is also unique in its set of genetic aberrations; even within

the same tumor, there can be signficant di↵erences in the genetic alterations between

the cells [11]. With over 20, 000 protein-coding genes within the human genome, and

various levels of regulation of the process of replication, transcription, and transla-

tion, grappling with and understanding the complexity and heterogeneity of cancers

is a monumental task for today’s researchers. Next-generation sequencing technolo-

gies are however making it possible to extract information on genetic aberrations at
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the single nucleotide level and heralding the age of tackling the problem of cancer

at the individual level where each patient’s genome is sequenced and analyzed. This

new era of biotechnology and big data provides opportunities to tailor treatment to

the individual and not just the disease.

1.1.2 Heterogeneity and Complexity of Brain Tumors

Cancer can be classified into di↵erent types based on their location in the

body and their genetic makeup. This thesis will focus primarily on Gliomas which

are the largest subset of brain and Central Nervous System (CNS) cancers and

originate in the glial, neuron-supporting cells in the brain. Primary brain tumors

or neoplasms originate in the brain (as opposed to spreading from other parts of

the body). According to the World Health Organization, there are over 130 types

of primary brain neoplasms [39]. Of these, nearly 32% are malignant, meaning they

divide uncontrollably and 68% are non-malignant. Although not as common as

breast and lung cancers, incidences of malignant brain and CNS tumors range from

5.71 to 10.25 per 100, 000 population in the United States. Brain cancers are also

the most common cancers diagnosed among children aged 0� 14 years [39].

The heterogeneity and location present a significant barrier to diagnosis and

treatment of brain and CNS tumors. For example, a study of 1, 122 patient samples

of adult di↵use glioma produced seven di↵erent subtypes based on distinct genetic

signatures [11]. Not only do these tumors di↵er between patients, but also tumors

within individual patients display characteristics from multiple sub-types. As illus-
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Figure 1.3: Profiling of primary Glioblastoma shows cells with di↵erent sub-type
characteristics. Each dot represents a cell. Mes, Neu and Pro represent di↵erent
Glioma subtypes. The location of the cells are based on a classifier score based on
all cells in the tumor [41].

trated in Figure 1.3, profiling of primary Glioblastomas (Grade 4 Gliomas) showed

that within a single tumor itself, cells can have characteristics of di↵erent subtypes

of Glioma [41].

Treatment of brain tumors typically may include surgery, radiation therapy

and/or chemotherapy. Many patients undergo surgery to remove the tumor, which in

most benign cases, is enough to mitigate patient symptoms. Aggressive, malignant

tumors such as Glioblastomas, have a high rate of recurrence, which necessitates

aggressive treatment that includes radiation therapy or chemotherapy. Radiation

therapy is the targeted treatment of cancerous cells using high energy beams such as

X-ray or protons. Chemotherapy, on the other hand, administers drugs that work

to destroy or damage cancerous cells. These drugs most often target DNA and RNA

sequences which halt or slow down cell division. However, many chemotherapy drugs

cannot di↵erentiate between healthy and cancerous cells; this leads to severe side

e↵ects for the patients such as nausea, fatigue, neurological impairment. Advances

in treatment primarily focus on finding gene and protein targets within tumor cells

5



that would enable focusing the e↵ect of treatment on cancer cells. More recent

approaches include attempts to recruit the patient’s immune system in the fight

against cancer cells.

1.1.3 Gliomas

The scope of this thesis covers a subset of CNS tumors called Gliomas. Gliomas

originate in glial cells of the brain or the spine. Glial cells support and provide

protection to neurons. Nearly 80% of all malignant brain tumors and 30% of all

brain tumors are diagnosed as some form of Glioma [22].

Types of Glioma. There are four primary types of Gliomas [24]:

Ependymomas Tumors that arise from a tissue called ependyma.

Astrocytoma Tumors originating in a particular glial cell called astrocytes. Astro-

cytoma can be organized into two classes: 1. Narrow Infiltration which are

mostly noninvasive tumors 2. Di↵use Intfiltration which are high grade tumors

with poor prognosis.

Oligodendrogliomas Tumors that originate from oligodendrocytes.

Brain Stem Glioma Tumors that originate in the brain stem.

Gliomas are categorized into grades for diagnosis according to the WHO Clas-

sification of Tumors of the Central Nervous System. The grades are determined by

pathological and molecular evaluation of the biopsy of the tumor. Gliomas can be

characterized as either Low-grade or High-grade:
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Low-Grade Gliomas (WHO Grade 2) Well defined and di↵erentiated tumors that

are more often benign with better prognosis for the patient. The median sur-

vival rate of patients diagnosed is approximate 5.6 to 11.6 years [38]. However,

they can progress into high-grade Gliomas.

High-Grade Gliomas (WHO Grade 3-4) Ill defined and undi↵erentiated malignant

tumors that have a worse prognosis. The median survival rate is approximately

3 years. Glioblastoma multiforme is the most malignant of the high grade

tumors with a median survival rate of around 8.8 months [38].

The exact causes for the formation of gliomas are still unknown but, as with

most other cancers, Gliomas form due to genetic abnormalities that a patient de-

velops or is predisposed to. Access to recent molecular characterization studies of

Glioma diagnosed patients have shown that certain molecular characteristics define

cohorts within the disease with varying prognosis, that is, likely course of disease [11].

In particular, mutations in the Isocitrate Dehydrogenase I and II gene (IDH1/2) de-

fine a subset of Glioma, which along with a specific hypermethylation phenotype

shows favorable prognostic outcomes. On the other hand, patients with una↵ected,

or “wild type” IDH1/2 have poor prognosis. As depicted in Figure 1.4, the study

of 1,112 Lower Grade Glioma and Glioblastoma patients can be clustered based

on di↵erent molecular characterizations. These clusters are shown to have varying

survival rates, age of diagnosis, grade and histology. It is evident that a molecular

characterization e↵ort to understand and define such clusters can aid a physician in

determining the likely prognosis. In this thesis, we use a similar approach to clus-
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ter patients based on molecular data and derive functional attributes that enable

creation of tumor models to select patients and preclinical models.

1.2 Formalizing Brain Tumor Profiles

1.2.1 Precision Medicine: Whole Genome Sequencing

Diagnosis of common illnesses today is based on symptoms of the patient

and other non-molecular clinical factors. With illnesses such as the common cold,

this is adequate, however, when dealing with complex diseases such as neurological

ailments, there are more nuances that a clinician will have to account for. With the

advent of new medical technologies, medicine is shifting from treating the disease to

treating the individual. The realization that each of us are biologically unique has

led to “omic” assessments that integrate an individual’s DNA, RNA and protein data

to aid in the diagnosis of the disease [54]. This section provides a brief introduction

to the sate of current medical technologies and methods that can be leveraged for

precision medicine.

The sequencing of the human genome and the rapid advancement in the speed

and reduction of costs in using such technology has been one of the most important

achievements of the past two decades. DNA sequencing works by first segmenting

the DNA into smaller pieces and copying the DNA multiple times over using bac-

terial cells. The DNA then undergoes a cycle of copying where a nucleotide base

attached with a fluorescent tag is added to the final base of the DNA fragment. At

the end of this process, a machine is able to read the bases based on the wavelength of
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(legend on next page)

Cell 164 , 550–563, January 28, 2016 ª2016 Elsevier Inc. 561

Figure 1.4: Molecular characterization of Adult Di↵use Glioma produces seven dif-
ferent cohorts with varying survival rates, age of diagnosis, grade and histological
characteristics.(Source: Caccarelli, et al. [11])
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the fluorescent tag. High-throughput sequencing of the genome can be done within

3 to 4 days [54], allowing access to the genetic information of the patient. With this

sequencing, the molecular basis of rare or low-frequency variants of diseases have

been uncovered [54]. Single-Cell sequencing, the sequencing of the genomic material

of individual cells, has also been a major factor in providing insights into disease.

DNA sequences obtained from multiple cells within a tumor have shown that there

is even heterogeneity amongst the cells of the same tissue [11]. DNA sequences allow

physicians to ascertain if there are any mutations or other structural changes (for

example, additional copies, deleted copies, fused genes, or insertions of viral DNA)

in a person’s DNA. As the technology improves and the costs fall, more people will

have access to these diagnostic tools, creating vast data sets that can be assessed in

detail to be used functionally.

DNA provides a rather static view of the cell; RNA, on the other hand pro-

vides a dynamic view of the state of the cell. RNA is the precursor to protein in

the cell; a RNA based assay shows what is being produced in the cell at the time

of the assay. Although not as streamlined as genome sequencing, RNA sequenc-

ing technologies are a relatively new set of tools that provide a dynamic view of

the patient. These tools capture data on gene fusions, spliced transcripts and the

whole gamut of RNAs including microRNA, and ribosomalRNA [54]. With RNA

sequencing, physicians are able to quantify cellular changes between a healthy and a

diagnosed patient. Theses changes, usually measured as mRNA expression, enable

physicians to understand which genes are active and inactive for a certain disease

and enable targeting of pathways associated with the translation of such genes.
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Epigenetics is the study of the modification in gene expression through regu-

latory molecules that a↵ect the genetic code. The epigenome consists of chemical

compounds that instruct the genome what to do without altering the code itself.

These compounds usually attach themselves to DNA and can turn on or o↵ DNA

to direct protein expression. Of the myriad of compounds, methyl groups – three

hydrogen molecules attached to a carbon molecule – have been mapped extensively

within 200 di↵erent cell types of the body [54]. Unusual epigenetic markers often

indicate altered states within cells and this can be leveraged to di↵erentiate diseases

and find potential pathways for drug-targeting.

Figure 1.5: The integration of patient data from the genome to the patient’s en-
vironment is paving the way for new treatment and diagnostic paradigms (Source:
Topol [54])

It is evident from Figure 1.5 that the paradigm of treating the disease is

shifting to that of treating the patient. With the availability of data from di↵erent

domains, it is now possible to digitize the patient. The key going forward will be
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the development of new frameworks and algorithms used in conjunction with the

integrated data set. In this thesis, we integrate data from the genome in the form of

mutations and copy number changes, from the epigenome in the form of methylation

sites and from the transcriptome in the form of mRNA expression. We provide a

framework that integrates information from these dimensions of the patient genome

and utilize the multi-dimensional data to generate models and rules that can guide

clinical decisions for patients diagnosed with Gliomas.

1.2.2 Preclinical Models

Before a new cancer drug can undergo clinical trials, which test the therapy

on human patients, they must undergo extensive preclinical studies. Preclinical

studies are performed on (experimental) model systems. The two main categories

of experimental models are: In Vitro-cell cultures, where cancer cells (originating

from humans or animals) are grown in Petri dishes under controlled conditions and

subjected to experimental treatments; and In Vivo-animal models, where cancer

cells are implanted in a live animal, or cancer is induced to form in the animal

and the treatment is administered to the animal. These cell and animal models are

an integral part of the extensive preclinical studies performed to understand the

e�cacy and potential toxicity of new cancer drugs. The drug development life cycle

depicted in Figure 1.6, is composed of drug discovery, preclinical trials, clinical trials

and FDA reviews and approvals. The development of a drug is often a decade long

process with the majority of the time spent in development and preclinical testing.
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Figure 1.6: Timeline for drug discovery and development.

Animal and cell models have been a mainstay of preclinical testing. However,

the complexity of aggressive cancers, and their interplay with other systems of the

organism (immune, organ, cellular) make it impossible for the cell line and animal

models to faithfully represent the human disease [29]; therefore, even therapies that

are proved successful in preclinical studies often fail to show e�cacy in clinical trials.

In fact, only about a third of highly cited preclinical trials enter clinical trials, and

out of those only about 8% of these drugs pass phase 1 of clinical trials [29].

Recent e↵orts such as the Cancer Cell Line Encyclopedia [7], have profiled

and compiled genetic characteristics of cancer cell lines and their response to a

collection of drugs, in search of genetic predictors of drug sensitivity [7]. In this

thesis we develop a framework that will enable characterization of patient cancer

profiles alongside cell line profiles, and reasoning about their similarity. We will

identify genetic markers that characterize molecular subtypes within Gliomas and

use these markers to identify preclinical models that share similar genetic charac-

teristics. With a data driven semantic model, we hope to bridge the translational
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barrier between preclinical and clinical trials.

1.3 Project Vision: Systems Support for Personalized Medicine

The long-term objectives of this work are to develop and validate methodolo-

gies and tools for the personalized treatment of brain cancer patients. The proposed

approach employs ideas in systems development with design platforms and digital

twins, and is supported by semantic modeling/machine learning techniques for rea-

soning with medical domain knowledge and various forms of patient-specific data.

1.3.1 Design Platforms

Design is a transformational process that takes a specification and turns it

into a product. The way in which this process is organized is called a methodology.

As systems become progressively more complex, and time-to-market constraints

progressively more stringent, the relative cost of systematically exploring design

spaces to find good designs, and then verifying and testing behavior will steadily

increase unless new approaches are developed.

We define platform-based design [48] as the creation of a stable architecture

that can be rapidly extended, customized for a range of applications (instead of a

single product), and delivered to customers for quick deployment. Platform-based

design methodologies improve the e�ciency, correctness and economics of design by:

(1) restricting the space of design options to pre-defined components, connectors,

and rules for assembly (all contained in a library), and (2) providing designers with
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Figure 1.7: Platform-based design for diagnosis and treatment of cancer patients.

the ability to look ahead and reason with libraries of available options. Design is

more e�cient because an engineer working on abstraction level n can improve the

quality of decision making by looking ahead to information at lower-level abstraction

levels (n+1, n+2, ...). The latter reduces both the number of required iterations

of development and large loop corrections. Design is more correct because systems

can only be assembled from components and connectors that have already been

developed and are known to work.

While these techniques were initially developed in the late 1980s and 90s for

the design of electronic, automotive and aircraft systems [26,47,50], it is now evident

that the same approaches add value to the design of experiments needed for accurate

development of biomedical devices [34]. A second emerging opportunity is synthesis

of patient treatment plans in the medical domain. As a case in point, Figure 1.7

shows how the design of patient treatment plans can be viewed as a meet-me-in-
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the-middle process where a top-down refinement of patient’s medical condition and

constraints on medical treatment (i.e., patient/medical application space), meets

with an architecture (glioma models and treatment options) space of potentially

good implementations for treatment of patients, plus constraints and measures of

e↵ectiveness for evaluating success.In order to capitalize upon the added capabilities

of such a technique, two key tenets of this work are that: (1) methods to succinctly

model a breadth of biological systems must be developed, and (2) these models must

be able to integrate with system-level models capable of describing the performance

of the entire doctor-patient-healthcare system. Current methods and techniques for

cancer patient treatment are simply are not capable of such full-system modeling.

1.3.2 Digital Twin Architectures

While platform approaches to design focus on e�ciencies at the the front-

end of system development, digital twins are expected to provide decision making

support throughout the system life cycle. For the application domain at hand, this

corresponds to the complete period in which a cancer patient is provided medical

treatment.

A digital twin is a cyber representation of a system that mirrors its implemen-

tation in the physical world; this is achieved through modeling of system structure

and behavior plus real-time monitoring and synchronization of data associated with

events. The latter are made possible by remarkable advances in sensing, communi-

cation, and AI technologies that have occured over the past few decades. From a
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temporal standpoint, the associated software and algorithms work to provide sim-

ulation and optimization support for forecasting of near-term system performance

and long-term planning. The digital twin concept [21] was initially proposed in

the 2000-2010 era as a way to support the design and operation of air vehicles

for NASA. Since then the range of potential applications has expanded to include

automotive components, manufacturing processes, power plants, and smart cities,

among others [21,27,33]. Within the systems engineering community, Siemens now

sees digital twins being the successor to procedures for model-based systems engi-

neering [10]. The associated view within the healthcare community is that digital

twin technologies that embrace open ecosystems and services can open the door to

improved clinical services and improved economics [18].

Figure 1.8 is a high-level schematic for digital twin architecture for personalized

medicine. In this setup, streams of patient data will be collected by wearable devices,

integrated with a patient’s clinical data and transmitted to a “patient” digital twin

that works as an operating system to identify medical events and then match details

of the biological-patient terrain to feasible plans for health treatment.

1.3.3 Combined Semantic and Machine Learning Approach

This work explores a combined approach to formalizing brain cancer profiles,

where semantic models and machine learning techniques work collaboratively as a

team to represent and reason with various types of patient data and medical domain

knowledge to determine recommendations for doctor action and patient treatment.
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The interaction of semantic modeling and machine learning techniques can be

succinctly represented by the architectural template shown in Figure 1.9. Semantic

models are ideal for the development of ontologies and inference rules of the Glioma

domain. In contrast, basic machine model are ideal for the identification of classifi-

cation, clustering and association relationship in data, and for the identification of

anomalies in streams of patient data. The architectural template employs feature

engineering [57] that allows to find or define features that enable ML algorithms

to work. Feature engineering begins with raw data from which relevant or use-

ful features are extracted and formatted as inputs of the ML algorithm. Clustering

identifies groups of objects in the domain that are related and decision tree classifiers

identify rules that maximize the likelihood of prediction for a target. Association

algorithms look for rules that strongly correlate di↵erent features of data that enable

the creation of rules that can span multiple domains. Finally, this template allows

dynamic changes to the knowledge base where new data can be easily ingested and

rules likewise updated.

Figure 1.10 takes the architectural template and customizes it to cover the

range of concerns one might see in a full implementation of the project vision. The

individual rows – data, ontologies and rules – represent the various domains of

interest, including those already introduced in Figures 1.5, 1.7 and 1.8. The lower

portion of Figure 1.10 depicts how ontologies are imported into a semantic graph,

rules are executed via a reasoner, and how the semantic graphs responds to any

incoming data or events triggering a graph transformation.
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1.4 Thesis Contributions and Organization

Figure 1.11 is a flowchart of the research activities covered by this thesis. On

the semantic side of the problem, the scope of investigation covers development of

ontologies and rules for domains highlighted in blue in Figure 1.10. These activities

are supported on the machine learning side with procedures for clustering and clas-

sification of patient data. The clustering and classification analyses are handled by

MATLAB and Neo4J, and Weka, respectively.

Sources of Data. Lower Grade Glioma and Glioblastoma patient data was ob-

tained from The Cancer Genome Atlas (TCGA). TCGA is a program initiated by

the National Cancer Institute to molecularly profile over 20,000 patients samples

covering 33 di↵erent cancer types [53]. A comprehensive overview of the data is

provided in Section 3.1.1.

Contributions. The contributions of this thesis are as follows:

1. We propose that a semantic approach to the CNS cancer domain will lower the

translational barrier of laboratory therapies not e↵ectively working in clinical

trials by:

• Enabling the rational selection of preclinical models.

• Enabling selection of patients for clinical trials based on similarity to such

models.

In order to accomplish this, we provide the initial steps and framework to

21



Figure 1.11: Flowchart of research activities covered by this thesis.

create a semantic model that incorporates patient genome data to be used

for model selection. We utilize the Semantic Model and Machine Learning

Architectural template [4,12] to create a semantic model that encompasses the

Glioma domain with rules that allow mapping of patients to relevant preclinical

models.

2. We develop prototype ontologies and rules for:

Glioma Ontology A simplified knowledge graph of terms associated with Glioma,

including sub-types with their hierarchical relationships.

Patient Ontology A knowledge base of terms and data types associated with
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features relevant to a patient.

Cell Line Ontology A simplified knowledge graph of attributes and terms as-

sociated with cancer cell line models.

Mapping Rules Rules derived from ML algorithms that enable mapping of

patients and cell line models to prognostically relevant clusters.

Individuals Instances of patients and cell line models ingested into the ontol-

ogy from di↵erent data sources.

3. We provide a framework for tackling high-dimensional whole genome sequenced

data by employing ML algorithms to cluster data into similar clusters. We

then utilize classifier algorithms to extract features that are relevant to these

clusters to be used in the mapping of the patients to the models.

4. We provide a graph database of the data and the results. We employ the Neo4j

graph database platform to store, query and validate the data. The database

allows for the querying of relevant clinical and molecular attributes of each

cluster and individual patients and allows for visualization of the clusters.

Organization. The thesis is organized as follows: Chapter 2 covers related work in

semantic modeling and semantic web technologies, and basic capabilities of machine

learning. Chapter 3 provides the framework to use unsupervised ML to create

clusters from high-dimensional patient genome data and the creation of a graph

database to query and visualize clusters. We provide an overview of the data used

for analysis and the formal description of the k-means clustering algorithm used to
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cluster the data. Chapter 4 provides a formal description of the classifier algorithm

and its results extracting features from the clusters. Chapter 5 describles the steps

and tools used to create the Glioma specific Semantic Model. We also provide an

application of the semantic model in mapping preclinical models to prognostically

relevant clusters. Finally, Chapter 6 provides the conclusion and future work
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Chapter 2: Related Work

2.1 The Semantic Web

2.1.1 Semantic Web Technologies

The World Wide Web is a network of machines that allow linking of docu-

ments through hyperlinks. It was created with the initial purpose for the sharing

of information among members of the scientific community. Early versions of the

World Wide Web only allowed for the retrieval of documents and interpretation of

these documents by the end-user. The Semantic Web is an extension of the World

Wide Web that aims to imbue semantic data into the network allowing machines to

access, share and automatically discover new knowledge [23,49].

Applications that access data from many sources and from large databases will

benefit from the automatic machine aided assistance in the creation of knowledge.

To this end, the Semantic Web utilizes markup languages to introduce, coordinate

and share semantic data and o↵ers the ability to reason and draw inferences via

ontologies. The Semantic Web provides an ideal framework to create models that

integrate di↵erent domains, react to new data and allow for automatic reasoning;

all of which will be crucial for precision medicine.
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Figure 2.1: The Semantic Web Layer Technologies (Source: Feigenbaum, L. [17]).

Figure 2.1 presents the technical infrastructure supporting the Semantic Web

and the framework to construct and employ a semantic model. Each layer is built

upon the capabilities of the lower layer with the top-most layer providing interfaces

for applications with the intent of knowledge discovery and reasoning. URI and

Unicode allow for identifying resources on the web and linking documents. The

extensible Markup Language (XML) provides the layer for representation and man-

agement of data. XML allows semantic web applications to gather information from

various sources on the web. Resource description framework (RDF) allows repre-

sentation of the data from web sources in a graph model. The graph representation

of data allows for the hierarchical representation and querying of data. Finally,

the web ontology language (OWL) provides semantic meaning to the model and
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the data. These technologies in conjunction provide a framework for reasoning on

multi-domain data, which for precision medicine applications, is a crucial element

for knowledge codification and creation.

2.1.2 Web Ontology Language (OWL)

Description Logic (DL) are a family of formal knowledge representation lan-

guages used in artificial intelligence to represent and reason about concepts of a

domain. DL is used in the biomedical domain to codify and reason over biomed-

ical knowledge. In information science, ontologies capture a domain’s definitions,

properties and/or attributes of data, classes, relations and individuals (or instances).

Ontologies are analogous to a class hierarchy and datatypes found in object-oriented

design (OOP). Unlike OOP, ontologies capture domain structure that assert rela-

tionship of domain entities (e.g.: subClassOf) and enable reasoning over multiple

domains.

The Web Ontology Language (OWL) is a DL-based knowledge representation

language used for the construction of ontologies [1]. OWL is built upon the RDF

concept and adds structure and vocabulary for describing properties and classes.

OWL allows property definitions, class restrictions and hierarchies and provides an

infrastructure to use first order logic to reason and infer new knowledge. Figure 2.2

presents an example of how a domain entity, a car, is captured in OWL.

In Figure 2.2, Company, Factory and Car are classes which have their own defi-

nition and attributes already defined in their respective ontologies. The relationships
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Figure 2.2: An OWL graph of attributes and relationships describing a car.

between di↵erent domain entities (hasManufacturer and hasLocation) are object

properties that specify a relationship between a pair of resources or nodes. Date

and String are connected via datatype property (hasCompletionDate and hasType)

and are akin to datatype in OOP. Figure 2.3 shows how OWL represents these

nodes and relationships formally. OWL is powerful in that it provides a framework

to order multi-domain data and the infrastructure to deploy a reasoner on the data.
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// Classes...

<owl:Class rdf:about="http://www.example.org/carOntology#Car"/>
</owl:Class>

<owl:Class rdf:about="http://www.example.org/carOntology#Company"/>
</owl:Class>

<owl:Class rdf:about="http://www.example.org/carOntology#Factory"/>
</owl:Class>

// Datatype Properties...

<owl:DatatypeProperty rdf:about="http://www.example.org/carOntology#hasType">
<rdfs:domain rdf:resource="http://www.example.org/carOntology#Car"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.example.org/carOntology#hasYear">
<rdfs:domain rdf:resource="http://www.example.org/carOntology#Car"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>

</owl:DatatypeProperty>

// Object Properties...

<owl:ObjectProperty rdf:about="http://www.example.org/carOntology#hasLocation">
<rdfs:domain rdf:resource="http://www.example.org/carOntology#Car"/>
<rdfs:range rdf:resource="http://www.example.org/carOntology#Factory"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.example.org/carOntology#hasManufacturer">
<rdfs:domain rdf:resource="http://www.example.org/carOntology#Car"/>
<rdfs:range rdf:resource="http://www.example.org/carOntology#Company"/>

</owl:ObjectProperty>

Figure 2.3: OWL definition of a car.
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2.1.3 Jena and Jena Rules

Apache Jena [2] is an open source Java framework that allows creation of Se-

mantic Web data applications. Jena is primarily used to create and manipulate

RDF (resource description framework) graphs and provides APIs that enable de-

velopers to utilize OWL (web ontology language) and SPARQL (RDF graph query

support) frameworks. Once a semantic model is created, Jena supports the query-

ing, transformation and reasoning of the model. Jena provides standard but limited

querying capabilities which span from listing all the statements in the model to

selecting statements based on attributes and/or subjects. It also provides three

operations; union, intersection and di↵erence to merge and manipulate data from

disparate sources. Finally, Jena provides a reasoning platform to dynamically alter

the semantic model and to infer knowledge.

Jena utilizes a rule-based reasoning approach; the knowledge-based system is

developed by deduction, induction and abduction methods from a starting set of data

and rules. Jena provides inference engines or reasoners to utilize and transform the

semantic model. Reasoners provide means to derive additional RDF statements from

a base RDF graph with ingestion of new data and the axioms and rules associated

with the reasoner. Jena Rules reasoner engine is used as part of this thesis. The

RDF knowledge graph along with the reasoner makes the semantic model a dynamic

and responsive model capable of integrating multi-domain data.
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2.2 Semantic Modeling: Ontologies and Rules supported by Data

Figure 2.4 presents a framework for the implementation of semantic models

using ontologies, rules, and reasoning mechanisms. From a data science commu-

nity perspective, an ontology is a set of knowledge terms that includes vocabulary,

semantic interconnections, and some simple rules of inference and logic for some

particular topic [23]. To provide a formal conceptualization within a particular

domain, and thereby facilitate communication and reasoning among domains, on-

tologies need to accomplish three things: (1) Provide a semantic representation of

each entity and its relationships to other entities, (2) Provide constraints and rules

that permit reasoning within the ontology, and (3) Describes behavior associated

with stated or inferred facts.

System data models contain the data and relationships among data needed to

build models of system structure and system behavior. For medical domain models,

this information will consist of catalogues of knowledge defining the disease space,

positioned alongside data collected from specific patients. The semantic counterpart

of medical domain models is ontologies (class hierarchies), individuals (graphs), and

rules. Data contained within the medical domain models will be ingested into the

semantic model as data property values. Relationships (including dependencies)

among the various classes will be represented as object properties. For the semantic

modeling of complex multi-domain applications it is common practice to organize

ontologies into hierarchies of knowledge. The middle and lower sections of Figure 2.4
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illustrate, for example, one such organization for the brain cancer domain. Patient,

symptom, and patient treatment ontologies are directly applicable to our domain

of interest, but also apply to the solution of medical problems outside brain cancer.

They can import and use top-level ontologies representing general concepts such as

time, space, and physical units that apply to and cut across many domains. One

important di↵erence between many engineering systems and the medical domain is

that the latter is concerned with systems that are living. The basic formal ontology

(BF0) [3] is an e↵ort to provide medical practitioners (among others) with sets of

carefully designed ontologies for the description of general concepts. BFO has found

considerable success in the medical and biomedical domains [51].

Rule-based approaches to problem solving provide several advantages: (1) rules

that represent policies are easily communicated and understood, (2) rules retain

a higher level of independence than logic embedded in systems, (3) rules separate

knowledge from its implementation logic, and (4) rules can be changed without

changing source code or underlying model [46]. They are particularly beneficial

when the application logic of a problem domain is dynamic, and where rules are

imposed on the system by external entities. These conditions apply to a wide

range of problems in systems engineering and analysis (e.g., semantic modeling for

cyber-physical systems [14, 15, 42], traceability of requirements to component-level

behaviors [13], component-based modeling, design and trade-o↵ analysis with RDF

graphs [35], validation of connectivity relationships in component-based systems [6]

and behavior modeling of distributed systems [5]).
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2.3 Machine Learning: Uncovering Patterns in Data

Modern-day machine learning (ML) techniques provide insights - sets of pat-

terns and behavior - to large amounts of data. These techniques and tools are used

ubiquitously in domains ranging from smart cities and buildings [4, 16] to bioinfor-

matics. Raw data, especially in the case of whole genome patient data, is often, to

the beholder, a monolith with no discernable dependencies or patterns that can be

easily modeled from first principles. However, today’s ML and data mining tools

leverage statistical methods to extract functional data from large data sets to be

used for diagnostic and prognostic needs. This section provides a brief overview of

the two primary flavors of ML and their application to this thesis.

ML techniques can be divided into two broad categories, unsupervised and

supervised learning.

1. Unsupervised learning tries to find the underlying structure and pattern to a

set of data where no label or ‘right answer’ is specified. Unsupervised learning

attempts to decipher what features of the data can be used to find partitions

or labels in the data that can be modeled. Common unsupervised algorithms

include k-means clustering and convolutional neural networks. Labeling of

patient data is often at the diagnostic level based on disease histology and

identification of a set of key biomarkers. For prognostic purposes, it is required

to go deeper into the data to find what specific attributes contribute to di↵erent

variations of the same disease. Adult Glioma, for example, can be divided into
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Figure 2.5: The figure on the left illustrates supervised learning where natural group-
ings of data is sought and the figure on the right illustrates unsupervised learning
where these natural grouping are mapped.

distinct subsets that have variable survival rates, patient age and other clinical

attributes based on each patient’s molecular features [11]. These kinds of

problems can be categorized as clustering problems where groups of instances

or examples that belong together are sought. We use the k-means clustering

algorithm to ascertain similar clusters based on each patient’s molecular profile

and identify those clusters which are relevant for prognosis. Once the clusters

are deemed clinically relevant, we are then able to label patients based on

the clustering and run supervised ML algorithms to ascertains features that

distinguish the clusters.

2. Supervised learning di↵ers from unsupervised learning in that it finds patterns

and mappings of a data set based on user-specified or predetermined labeling

of a training data set. Supervised learning is a form of classification learning

where the learning scheme is presented with a set of classified examples or a

training set from which it is expected to learn a way of classifying unclassified
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data. Supervised ML has two steps: (i) Training (ii) Prediction. The training

step uses probabilistic models to create decision models or functions that best

mirror the mappings specified by the training set. The prediction step uses

the derived model and applies it to the dataset to calculate the e↵ectiveness

of the model.

The k-means algorithm provides labels to each instance of the data based on molec-

ular similarity. This labeled set of data will then become the training set for the

classification investigation. We utilize the J48 data mining algorithm, a Weka based

java implementation of the C4.5 algorithm [43,56], to create decision trees that al-

low classification of patients based on their molecular profile. The decision tree

provides rules that enable us to map data, without any labels, to a prognostically

relevant cluster.
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Chapter 3: Leveraging Patient Similarity for Clustering

3.1 Finding Patient Clusters Based on Profile-Similarity

3.1.1 Patient Data

There has been a concerted e↵ort to profile cancers based on their molecular

makeup. The Cancer Genome Atlas (TCGA) was one of the largest-scale e↵orts

that aimed to generate, analyze, and interpret molecular profiles at the DNA, RNA,

protein, and epigenetic levels [53]. This e↵ort has led to the creation of a data set

that allows for the comparison and contrast of multiple tumor types. The data set

includes molecular and clinical data from more than twelve di↵erent tumor types;

Glioblastoma, first, and later Lower Grade Glioma and Glioblastoma, were also

profiled as part of TCGA.

Previous work using the Cancer Genome Atlas data have incorporated multiple

dimensions of the TCGA omic characterizations [9]. In our approach we work with

four of the seven TCGA omic characterizations in Figure 3.1: Mutations, Copy

Number, DNA methylation and mRNA expression. Clinical data is also added to

the database but not used for clustering analysis. By combining these di↵erent

characterizations or patient views, we hope to get a more comprehensive definition
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Figure 3.1: The Cancer Genome Atlas Integrated Data set. (Source: Weinstein, et
al. [53])

of patient similarity for clustering analysis.

The sample set derived from TCGA are all patients diagnosed with brain

tumors; specifically Glioblastoma and Lower Grade Glioma. The total sample set

consists of 1,019 patients, each with four di↵erent patient views: Mutation, Copy

number, mRNA expression and DNA methylation. Each patient view consists of

approximately 11,000 genes. So in total, there are approximately 44,000 units of data

for each patient sample. The values for each gene in each patient view are normalized

to 0 (low), 1 (intermediate) or 2 (high) for Copy Number, DNA Methylation and

mRNA Expression and simply 0 (no mutation) or 1 (mutated) for mutations.

Patient Views. The four di↵erent patient views are defined as follows:

Mutations Nucleotide alterations in a gene where a single or multiple nucleotide base

pair(s) are altered due to DNA copying errors. Mutations may cause changes

in protein structure and expression. Values are binary with 0 meaning no
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mutation and 1 meaning mutation.

Copy Number Repetition or deletion of long sequences of nucleotides. These often

arise from incorrect repair of DNA damage and may result in aberrant protein

expression. For each gene, values are normalized across the cohort to 0: low

copy number, 1: intermediate copy number, and 2: high copy number.

DNA Methylation Process by which methyl groups, composed of carbon and hy-

drogen molecules, are added to the DNA molecule. This process a↵ects how

much of the DNA is active without changing the sequence. For each gene,

values are normalized across the cohort to 0: low degree of methylation (also

known as hypomethylation), 1: intermediate degree methylation, and 2: high

degree of methylation (also known as hypermethylation).

mRNA Expression Measurement of how much mRNA is produced from particular

genes. For each gene, values are normalized across the cohort to 0: low level of

expression, 1: intermediate level of expression, and 2: high level of expression.

TCGA clinical data for each of the samples was used to assess prognostic significance

of the identified clusters. Once clustering analysis using the molecular patient views

was conducted, overall survival information was used to calculate Kaplan-Meier

survival. The Kaplan-Meier survival assesses whether the clusters identified using

their molecular characteristics, contained prognostic value.

Patient Clinical Data. The patient clinical attributes are defined as follows:

Sample ID A TCGA ID unique to each sample.
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Sex The sex of the patient.

Race The race of the patient.

age The age of the patient.

AgeQ2 The normalized age of the sample to the whole sample set.

Time The survival time of the patient measured in days.

TimeQ2 The normalized survival time of the patient to the whole sample set.

Status The status of the patient, with 1 being alive at last follow up or study end

and 0 being deceased.

It is to be noted that for methylation and mutation studies, a significant

portion of the GBM patient molecular data is unavailable. This is due to the

fact that the TCGA program spanned over a decade with GBM being one of the

pilot studies. With advances in profiling technologies, studies done after GBM,

such as LGG, were conducted using newer technologies and streamlined methods

leading to better data availability. More sequencing data is available under protected

availability but not used for this thesis.

3.1.2 Calculating Inter-Patient Similarity

With high dimensional patient data that contains thousands, if not, millions

of data points, brute-force statistical and machine learning methods are ine�cient

to find patient groups. Hence, the Jaccard index was calculated to discover patient
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groupings based on inter-patient similarity. The Jaccard index measures similarity

between any number of non-empty finite sets and is defined as the intersection over

the union. Let A and B be two non-empty finite sets, then the Jaccard index is

defined as:

J(A,B) =
|A ^ B|
|A [ B| =

|A ^ B|
|A|+ |B|� |A [ B| (3.1)

MATLAB was used to calculate the Jaccard index between each sample. Each

patient view was downloaded as a matrix from a text file. Data for each patient

view contained integers for genes with available data and the string ‘NA’ for genes

with no data. The following algorithm was used to generate the intersection and

the union for each patient view:

for Number of Patient Samples do

for Number of Genes do

if Both Patients have Integer data then

increment the count of the union of the two patients by one;

end

if Both Patients have identical Integer values then

Increment the count of the intersection of the two patients by one;

end

end

end

Result: Two 1019x1019 matrix that contain the Union and the Intersection.
Algorithm 1: Algorithm to calculate the Jaccard Index for each Patient View
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A total of eight 1019x1019 matrices were generated; four for the intersection

and four for the union of each patient view. For each of the patient views, the

respective intersection matrix was divided by the union matrix to calculate the

jaccard index matrix. The jaccard index matrix for each of the four patient views

were then averaged together to create a correlation matrix that contained the jaccard

index of how similar a sample is to another. The final result is a 1019x1019 matrix

which contains the Jaccard index for each patient sample to the rest of the samples.

Each value in the matrix corresponds to the Jaccard index between the patient

represented by the row number and the patient represented by the column number.

3.1.3 k-means Clustering Algorithm

Clustering techniques are applied when there is no class to be predicted but the

instances can be assigned or partitioned into natural groups or clusters. A cluster

is defined as an aggregation of data points or vectors based on similarity. The k-

means algorithm is an unsupervised clustering algorithm that partitions data into

k mutually exclusive clusters. The algorithm iteratively tries to assign each data

vector to a cluster based on the features provided. The goal of the algorithm is to

create the specified k centroids and reduce the sum of squares of all the data points

assigned to the centroid. Formally, the algorithm aims to minimize the following

objective function [28]:

K =
kX

j=1

mX

i=1

||xj
i � cj||2 (3.2)
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where ||xj
i � cj||2 is the euclidean distance between a data vector xj

i and a centroid,

cj. k is the number of clusters specified and m is the total number of data points.

Note that xm
i can be an n-dimensional vector.

The algorithm iteratively minimizes the sum of squares for each of the clusters.

It begins with assigning k centroids and iteratively moves the centroids until the best

minimization is found. Figure 3.2 is a graphical representation of each iteration of

the algorithm in 2-D space. It is composed of the following steps:

1. Place k random points in the n-dimensional space of all the data points as far

away from other points. These are the initial centroids.

2. Assign each data point to the closest centroid. Closeness is calculated as the

euclidean distance between the data point and the centroid.

3. When all data points have been assigned, take the average of the points in the

cluster and recalculate the centroid position.

c
t+1
j =

1

ncj

X
xj (3.3)

cj is the new centroid position, ncj is the number of data points in the cluster

and xj are the data points in the cluster.

4. Repeat steps 2 and 3 iteratively until the centroids do not move.

K-means is easy to implement and is one of the best clustering algorithms

to run on large data sets. Compared to other clusters, the computational cost of
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Figure 3.2: K-means clustering in 2-D space.

k-means is low; with a complexity of O(K*m*n), where k is the number of clusters,

m is the number of data points and n is the dimensions of the vectors. However, k-

means can only be used on numeric data sets and perform better where the clusters

are more spherical. Another caveat of the algorithm is specifying the number of

clusters to partition the data into. It is not always evident what the optimal k

value should be, however methods such as the elbow method and silhouette method

can be utilized to narrow down to a range of k values. The algorithm is a built-in

function in MATLAB, and requires as inputs the data matrix and the number of

clusters k, and outputs the cluster ID of each sample and the centroid locations.

The elbow method was used to determine the minimum k value for the data set.

The method works by running the k-means algorithm from 1 to k times iteratively

on the data set, and measuring the total sum of squares of all the data from each

cluster. The initial few clusters will have a high sum of squares value but, as the

number of clusters increase the total sum of squares will drop precipitously. As the
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Figure 3.3: The Total sum of squares vs. the number of clusters identify a k value
of 5 as the minimum value when evaluating k values from 1 to 10.

process continues, there will come a point at which adding a new cluster will only

decrease the total sum of squares marginally, at which point, an angle will develop

in the plot of the number of clusters versus the total sum of squares. This point

denotes the minimum k value for the data set.

Previous work using the TCGA data sets selected 7 clusters of Glioblastoma

and Lower Grade Glioma diagnosed patients [11]. For our data set, we explored k

values ranging from 2 to 10 clusters. As depicted in Figure 3.3, the elbow is created

at a k value of 5. The result of the elbow method suggests that for the patient

correlation matrix, a minimum k value of 5 is adequate to decrease the total sum of

squares of the data. Any k value higher than 5 will give us clusters with relatively

low sum of squares, whereas any value lower than 5 will have a high total sum of

squares. The results of the clustering is presented in Section 3.2.
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3.2 Clustering Results

3.2.1 Validating Results

Based on the results of the elbow method detailed in section 3.1.3, we ran

the k-means method with k values from 5 to 9. This produced five di↵erent data

sets with the patient samples clustered into 5, 6, 7, 8 and 9 clusters respectively.

For each data set, we performed the Kaplan-Meier overall survival analysis [25] and

the Log Rank test [30] to determine if overall survival of patients from di↵erent

clusters were statistically di↵erent. That is, we wanted to identify if the partitioned

clusters validly captured a cohort of the population with a di↵erent survival rate.

A statistical significance between the clusters would indicate a di↵erence in the

prognosis of the patients in the cluster compared to other patients.

The Kaplan-Meier Test estimates the probability of survival at each point in

time [25]. It is used to compute a population survival function from the survival

time and status (alive or dead) for patients. Survival time is measured as the unit of

time a patient is alive after diagnosis and is updated each time a patient comes in for

a follow-up. Kaplan-Meier also takes into account censored data where the patient

data is missing after a period due to the patient withdrawing from the study or from

not having a follow-up. The probability of surviving at any time ti is calculated as

the product of the probability of surviving at each of the times before ti, i.e. from

t1 to ti�1. The Kaplan-Meier function is defined below:
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S(t) =
tnY

i=t1

ai � di

ai
(3.4)

where S(t) is the probability of surviving longer than time t, ti is the time interval,

tn is the maximum survival time in the data, ai is the number of patients known to

have survived at time ti and di is the number of patients who have died at ti.

The Log Rank test is a hypothesis test that compares the survival curves of two

independent groups or clusters [30]. The test can be approximately distributed as

a Chi-Squared statistic. The test is used to identify if two clusters are statistically

di↵erent from one another. Essentially the test compares the observed and the

expected survival rates for two clusters. The null hypothesis for the test states

that two independent groups or clusters have equal survival rates. The degree of

freedom is calculated as the number of outcomes (dead or alive) minus one which

in this case is 1. The Chi-Squared value is computed as follows:

X
2 =

nX

i=1

(Oi � Ei)2

Ei
(3.5)

Where n is the total number of clusters being compared, Oi is the observed number

of deaths in each cluster and Ei is the expected number of deaths in each cluster.

The Log Rank test can be done pair-wise for each cluster in the group to identify if

each cluster is statistically significant from the other clusters. When performing a

pair-wise cluster comparison, the expected number of deaths in each cluster can be

calculated as follows:
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E1 =
tnX

i=t1

N1 ·O1,2

N1,2
, E2 =

tnX

i=t1

N2 ·O1,2

N1,2
(3.6)

where, at time t, N1 and N2 are the number of survivors in cluster 1 and 2 respec-

tively, O1,2 is the total number of deaths observed in both clusters and N1,2 is the

total number of survivors in both clusters. The Chi-Squared value can then be used

to determine the p-value. A p-value less than 0.05 corresponds to rejecting the null

hypothesis; meaning there is statistical significance between the survival rates of the

two clusters. The Kaplan-Meier and Log Rank tests were jointly conducted using

the survdi↵ function in the R statistical software [55].

3.2.2 Clustering Results for Multiple k Values

Pair-wise Log Rank tests were conducted for k values ranging from 5 to 9. The

results of each clustering are presented below.

Figure 3.4 presents the Log Rank test output for k values from 5 to 7. For

k = 5, only cluster One is statistically di↵erent from other clusters with a p-value

less than 0.05. The remaining clusters have higher p-values, indicating that the

overall survival of the clusters are not statistically di↵erent. Of the total 9 pair-

wise comparisons, only 4 were less than 0.05. For k = 6, clusters Two and Six are

statistically di↵erent from the rest. Even with 60% of pair-wise comparisons, 9 out

of 15, having a p-value higher than 0.05, only two clusters out of the 6 are distinct

from others. Finally, for k = 7, clusters Three, Six and Seven have majority of pair-

wise p-values less than 0.05 in the pair-wise comparisons. However, the majority
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Figure 3.4: Log Rank pair-wise p-values for k values of 5 (top), 6 (middle) and 7
(bottom). P-values less than 0.05 are underlined in red.

of pair-wise comparisons for clusters Five, Four, One and Two have high p-values

indicating that these clusters are not well di↵erentiated from the rest. The results

suggests that a clustering of the patient correlation data into 5, 6 or 7 clusters is

not adequate to produce distinct clusters with di↵ering prognosis.

Clustering of patient data into 8 clusters produced clusters where 75% of pair-

wise p-values, 21 out of 28, were lower than 0.05. Figure 3.5, shows the results of

the Log Rank pair-wise test for 8 clusters. The test indicates that cluster Four is

statistically di↵erent from all other clusters, clusters Two and Six are statistically

di↵erent from 6 out of the 7 clusters, clusters One and Eight from 5 out of 7

clusters and finally clusters Three, Five and Seven from 4 out of 7 clusters. The
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Figure 3.5: Log Rank pair-wise p-values for patient correlation data clustered into
8 clusters. p-values less than 0.05 are underlined in red.

results indicate that all clusters are statistically di↵erent to at least the majority of

clusters.

Figure 3.6: Log Rank pair-wise p-values for patient correlation data clustered into
9 clusters. p-values less than 0.05 are underlined in red.

Clustering of patient data into 9 clusters produced only 66% of pair-wise re-

sults, 24 out of 36, to have p-values less than 0.05. This indicates that the clusters

are less statistically significant when compared to the partitioning of data into 8

clusters. Cluster Two is statistically significant from 7 out of 8 clusters, clusters

One, Three and Nine from 6 out of 8, clusters Five, Six and Seven from 5 out of 8

and cluster Four from 4 out of 8. It is interesting to note that although the total

sum of squares decreased, the clustering of patients into 9 clusters did not produce

more significant results when compared to 8 clusters.
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Clustering of patient correlation data into 8 clusters captures enough patient

cohorts with variable survival times when compared to the clustering of data into 5,

6, 7 or 9 clusters. As mentioned above, the 8 clusters had the highest percent of pair-

wise p-values less than 0.05. Previous studies using the TCGA data set produced

7 clusters [11]; of which 3 out of 7 were majority IDH mutants with lower grade

gliomas and 4 out of 7 were primarily IDH wild type with majority glioblastomas.

Similarly, in our clustering results, 3 out of the 8 clusters, clusters Two, Four and

Six, were primarily IDH mutant with majority lower grade gliomas. Likewise, 4

out of 8 clusters, clusters Three, Five, Seven and Eight were IDH wild type with

majority glioblastomas. Only cluster One, which is composed of almost an equal

ratio of IDH wild type and mutants, was not identified in literature. Also of note,

cluster Four from the 8 cluster result was split into two clusters, cluster Two and

Seven, for the 9 cluster result. A comparison of the pair-wise p-value in Figure 3.6,

show that clusters Two and Seven are not statistically di↵erent in the 9 cluster result

whereas cluster Four can be di↵erentiated from all clusters in the 8 cluster results.

In conclusion, clustering of data into 8 clusters was chosen as the best clustered

result for the patient correlation data.

Now that a representative cluster is identified, the 8 clusters will be the input of

the data mining investigation conducted in Section 4.3. The data mining procedure

will allow us to identify molecular attributes that map each sample into its respective

cluster. This in turn allows us to map new patient data into the 8 clusters without

performing the k-means clustering procedure again. A discussion of each of the

clusters from the 8 cluster results is found in Section 3.2.3.
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3.2.3 Eight Clusters Result

Cluster IDs for each sample was outputted by the native k-means function in

MATLAB. The cluster IDs along with clinical data and relevant molecular attributes

detailed in previous TCGA studies [11] were ingested into Neo4j. Neo4j is a graph

database platform used for the querying and visualization of the cluster data [32].

For a more detailed discussion on graph databases and Neo4j, refer to Section 3.3.

The following figure, Figure 3.7, provides the block definition diagram of the TCGA

patient Neo4j node with its property names and data types. Once ingested, relevant

properties of a cluster can be queried using Neo4j’s native Cypher query language

[19].

Figure 3.7: SysML Block Definition Diagram of the TCGA patient Node in Neo4j.

Table 3.1 provides the total number of samples, the average age of patient, the

average survival time measured in days, the IDH mutation count and the type of

Gliomas diagnosed for each cluster. Glioma Type has two attributes for the diagnosis
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Cluster
ID

Num. of
Samples

Avg. Age Avg. Time Glioma Type

1 130 52.7 585.5
LGG: 35
GBM: 95

2 119 40.6 840.0
LGG: 94
GBM: 25

3 134 53.1 557.5
LGG: 46
GBM: 88

4 122 43.7 781.2
LGG: 122
GBM: 0

5 139 55.7 437.8
LGG: 36
GBM: 103

6 125 40.4 717.2
LGG: 116
GBM: 9

7 129 57.3 472.5
LGG: 55
GBM: 74

8 121 56.8 474.2
LGG: 7

GBM: 114

Table 3.1: Relevant clinical attributes of each of the 8 clusters.
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Cluster
ID

IDH Mut. TP53 Mut. ATRX Mut.
Avg. EGFR

Amp.

1
1: 48
0: 61

1: 24
0: 45

1: 9
0: 60

-0.430

2
1: 90
0: 19

1: 81
0: 17

1: 63
0: 35

0.166

3
1: 29
0: 85

1: 45
0: 29

1: 22
0: 52

-0.027

4
1: 122
0: 0

1: 5
0 : 116

1: 2
0: 119

-0.589

5
1: 28
0: 94

1: 6
0: 59

1: 3
0: 62

0.147

6
1: 112
0: 10

1: 99
0: 16

1: 70
0: 44

0.122

7
1: 4
0: 106

1: 6
0: 68

1: 2
0: 72

1.13

8
1: 15
0: 81

1: 7
0: 27

1: 2
0: 32

-0.115

Table 3.2: Relevant molecular attributes of each of the 8 clusters.
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Figure 3.8: Kaplan-Meier survival curves for each cluster.

of the disease; LGG is Lower Grade Glioma and GBM is Glioblastoma. Table 3.2

provides some of the relevant molecular attributes identified in literature [11] and in

Figure 1.4 for each of the clusters. All mutation data has two attributes: 1 signifies

a mutated gene and 0 a wild-type gene. The average of the unnormalized EGFR

copy number data is also provided to identify any amplification in the gene. Figure

3.8, provides the Kaplan-Meier survival curves for the eight clusters.

Although the clusters do not partition exactly compared to previous studies

[9, 11], there are identifiable molecular attributes in the clusters which validate the

respective clinical findings. For example, IDH mutations in gliomas are characterized

as having an early age of diagnosis with longer survival rates than IDH wild-type

gliomas [11]. Most brain tumors with IDH mutations are also diagnosed as Lower

Grade Gliomas. These findings are reflected in clusters Two, Four and Six which
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all have majority IDH mutations, and the patients have relatively younger age at

diagnosis and relatively long survival time and probability (slowly sloping survival

curves). The majority of the patients in these clusters are diagnosed as Lower Grade

Gliomas as well. On the contrary, patients harboring IDH wild-type tumors have

older age at diagnosis and poor prognosis with short survival times (steep survival

curves). These tumors are often diagnosed as Glioblastomas. Clusters Three, Five,

Seven and Eight reflect the clinical attributes found in IDH wild type tumors.

A closer look at the clustering also reveals clusters that potentially coincide

with clusters identified by Caccarelli, et al. [11]. Clusters Two and Six are both

characterized with a majority of IDH, TP53 and ATRX mutations. These molecular

attributes are also reflected in the G-CIMP-low and G-CIMP-high clusters in Figure

1.4. All IDH wild type clusters also have relatively high EGFR amplification values,

indicating that these clusters form the Classic-like, Mesenchymal-like, GBM and

PA-like partitions represented in Figure 1.4. With clinical findings validated by

select molecular attributes, the 8 cluster result provides a usable training set for the

data mining investigation described in Chapter 4.

3.3 Querying Results using Graph Databases

3.3.1 Graph Databases

Traditional databases follow the relational paradigm where data is grouped

into tuples and relations. This model organizes data into tables or relations where

each tuple or row is a data object or entity with columns defining the attributes
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of the entity. Graph databases deviate from this traditional model; instead of rows

and columns, graph databases use nodes and edges to represent and store properties

and relations of data. Graph databases provide flexibility in defining data entities

and stress the relation between entities of data.

Graph databases are a subset of the NoSQL database paradigm which aims to

address limitations of relational databases (RDBMS). NoSQL stands for “Not Only

SQL,” which emphasizes performance and scalability than rigidity of data. This

paradigm is a result of rapid growth in web services such as social networks which

have flexible and non-rigid data entities that are highly connected. This allows the

insertion of data entities that may not have the same attributes as others into the

database without losing application functionality. This flexibility means that the

database designer does not have to excessively design and plan the database before

ingesting data.

Graph databases as the name implies, are based on graph theory and are

comprised of a set of nodes, edges and properties.

Nodes Represent entities or data objects in the database such as a person or a social

network account. Nodes are analogous to rows in RDBMS.

Edges Represent relationship between nodes. Edges may be directed or undirected

in graph databases. Edges di↵erentiate graph databases from RDBMS, where

relationships are not explicitly represented.

Properties Represent the attributes of each data entity. These are analogous to

columns in RDBMS. Edges may also contain properties in a graph database.
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The true advantage of graph networks is in the scalability and flexibility of the

data that it can contain. They are exceptional in handling search and queries when

working with large volumes of data and in areas where data topology or connectivity

is important. Examples of graph database employed successfully include Google’s

Knowledge graph [52], Twitter’s FlockDB, and many more. Applications in biology,

chemistry, and the semantic web are examples of fields that can more naturally be

represented by graph databases.

Graph databases are slowly becoming more common in bioninformatics so-

lutions. They are helpful in storing genome, protein and other views of the hu-

man body while enabling creation of the web of connections between these di↵erent

views. When working with human genome data, RDBMS are adept at representing

the genome attributes of single individuals. However, graph databases allow the

storage, search and queries of data as well as the relationship between individual

entities in an e�cient and speedy manner.

3.3.2 Neo4j Graph Platform

Neo4J is the leading open-source graph database platform available at the

moment. It is touted to be able to handle billions of records including nodes and

edges while maintaining search and query support. Neo4j has been used as the

primary graph database solution to large-scale data projects. For example, Neo4j

powers Bio4j which is an aggregated knowledge base for protein related information

accrued from disparate sources such as Gene Ontology, NCBI Taxonomy etc [40].
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Data storage in Neo4j is dissimilar to relational database management systems

(RDBMS). Whereas RDBMS use pre-defined tables with often disjointed relation-

ship between entities, Neo4j leverages a graph storage structure. Data modeling is

much more flexible and easier as di↵erent data entities can be added or changed at

any time. RDBMS on the other hand require upfront development of the logical

model and data types sources need to be known ahead of time. Querying in Neo4j

is much faster than in RDBMS where relationship between entities are not explic-

itly defined. The graph structure of Neo4j allows natural querying regardless of

the number of relationships. Neo4j is a highly reliable, available and fault-tolerant

platform that complies with modern RDBMS database standards. Much like ora-

cle databases, Neo4j is fully ACID compliant [32]; this means all transaction with

the database are processed reliably and validly even in the event of failures or user

errors.

ACID Compliance. Acid compliance is defined as having the following attributes:

Atomicity If a transaction fails, the database will be una↵ected.

Consistency Ensures any and all transactions can change data only in predefined

or valid ways.

Isolation Any data being modified during a transaction cannot be accessed until

the transaction is complete.

Durability All complete transactions will be reflected in the database.

Neo4j is now widely accepted as the standard in graph database enterprise solution.
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Figure 3.9: The label property graph model of Neo4j.

As mentioned in Section 3.3, Neo4j employs Nodes to store data attributes

and properties, and edges to store relationships. Nodes are connected by edges and

may have one or more labels-groupings of nodes into sets. Labels and properties

are indexed for optimized querying. Figure 3.9, shows a simple schematic of the

structure of Neo4j. The two nodes represent a person, which is identified by the

node label. The two nodes are connected by two relationships which can be directed

or undirected and finally, the nodes contain attributes specific to each node.

Neo4j can be embedded in Java applications. For the purposes of this thesis,

Neo4j Community Edition 3.4.5 was used with Neo4j dependency added via Apache

Maven. Apache Maven is a build automation tool that dynamically downloads Java

libraries from an online central repository. Java version 8 and 11 are supported by

current versions of the Neo4j java driver. Neo4j also supports the Cypher Query

Language which allows for e�cient querying and updating of graphs [19]. Cypher

o↵ers the full range of features expected from a RDBMS Query Language optimized

for graph databases.

From figure 3.9, it is easy to see how Neo4j’s structure can be leveraged to not
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only store and query data but employ graph algorithms to garner more insights into

the data. Neo4j o↵ers a suite of algorithms used to compute metrics of graphs of

nodes and relationships. Neo4j o↵ers centrality algorithms which help in determin-

ing the importance of nodes in a network and path finding algorithms that allow to

evaluate the availability and length of routes. Neo4j also o↵ers community detec-

tion algorithms that evaluate if there are clusters or partitions of nodes. With the

integration of data from multiple domains, Neo4j is an ideal tool to visualize and

query networks of biological data from a database storage and query perspective.

The results of the clustering performed in this thesis can be downloaded as a Neo4j

database upon request.

3.4 Discussion

This chapter provided an overview of the patient data, the clustering analysis

and the results of the clustering analysis. With high-dimensional data, we employed

the Jaccard index to create a correlation matrix capturing how similar a patient is to

another based on four patient views (Mutations, Copy Number, DNA methylation

and mRNA expression). A clustering analysis was conducted using the k-means

algorithm to then partition the patients based on molecular similarity. The idea is

that molecular similarity will lend itself to similar prognosis. The clustering results

were then validated using the Kaplan-Meier and Log Rank tests and corroborated

with literature. The results are then uploaded to the Neo4j graph database for

querying and visualization.
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As sequencing technologies advance, patient data will become more precise

and abundant. However, transforming the raw data for functional use requires new

frameworks and algorithms. We provide a straightforward and e↵ective approach by

using the k-means algorithm to transform independent numerical patient data into

cohorts with similar characteristics. This is in no way a novel approach, however,

this approach combined with classification and semantic modeling, discussed in the

subsequent chapters, create a framework for e↵ectively transforming the patient

data into functional models.
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Chapter 4: Decisions Supported by Data

4.1 Weka: Open-Source Data Mining Application

4.1.1 Weka Explorer

Data mining helps in elucidating the hidden patterns and intelligently ana-

lyzing the vast sources of data that is being generated and stored nowadays. Data

mining is defined as the process of discovering patterns in data in an automatic or

semiautomatic way [56]. In data mining, the data will take the form of a set of

examples – examples of sepal length of flowers. The output of data mining is the

predictions on new examples based on the previous examples or data – the species to

which a flower belongs to based on its sepal length. The Waikato Environment for

Knowledge Analysis (Weka) is an open-source software developed at the University

of Waikato, New Zealand that provides multiple algorithms and tools to analyze

large data sets and provide functional insights into the data [56].

Weka provides implementations of data analysis and predictive modeling soft-

ware that can be used via an interactive graphical user interface or via Java APIs

(Application Programming Interfaces). Weka provides methods for most of the

important data mining problems ranging from regression, classification, clustering,
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Figure 4.1: The Weka Explorer GUI Menu.

association rule mining and attribute selection. It also provides a workbench which

allows for data pre-processing and data visualization. The easiest way to use Weka’s

algorithms and tools is via the Weka Explorer GUI, depicted in Figure 4.1. TheWeka

Explorer has six primary tabs which are summarized below.

• Preprocess Choose and modify dataset for investigation.

• Classify Train learning schemes and evaluate the schemes through classifica-

tion or regression.

• Cluster Learn clusters for the dataset.

• Associate Learn and evaluate association rules for the dataset.

64



• Select attributes Select attributes of interest from dataset for learning scheme.

• Visualize View 2-D plots of data and other diagrams like decision trees.

Weka is written in Java and can be run on Linux, Windows and Macintosh operating

systems. Weka version 3.8.3 was used as part of this thesis.

4.1.2 Instances, Attributes and ARFF format

The input to a Machine learning function is a set of instances or examples. The

input data set is expressed as a set of independent instances each with its own set of

predetermined numeric and/or non-numeric attributes. Weka broadly classifies all

attributes as either numeric or nominal [56]. Numeric attributes measures numbers

that are either real or integer valued. Nominal attributes are values that are non-

numeric symbols and serve as labels or names. Boolean attributes are a special case

of nominal attributes-often designated as true or false, however they can also be

characterized by the standard integer convention.

The bulk of the time in a data mining investigation is consumed by input

preparation and processing. Weka uses the attribute-relation file format (ARFF)

for all input of data. The ARFF file is an ASCII text file that lists a set of instances

that share a common list of attributes. Figure 4.2, depicts the contents of an ARFF

file relating to weather data. The file is composed of two sections. The header

section contains the name of the relation and a list of attribute definitions. Each

attribute is defined by its name and its data type. The final attribute definition is

the attribute to be classified. For example, in Figure 4.2, a learning scheme will be
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created to determine if one should play or not based on the weather data instances

provided. The second section is the data section which contains instances of data

with predetermined or observed values for the attributes.

%ARFF file for weather data with some numeric features

@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data
%14 instances

sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no

Figure 4.2: Example of an ARFF file content.

Weka provides the ARFF-Viewer tool to view, edit and create ARFF files.

The patient data was first saved as a comma separated file (csv) containing the

relevant molecular information and the Cluster ID for each patient. It is to be

noted that the first row of the csv files must contain the name of the attributes with

each subsequent row being the instances, otherwise, Weka will not be able convert
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the file into an ARFF file. The csv file was then uploaded into ARFF-Viewer from

which attributes can be selected or deselected as well as the attribute to be classified

can be selected. The csv file can then be saved as an ARFF file by simply going to

File and Save As.

4.2 Decisions made from Data

4.2.1 Decision Trees

Decision trees are decision support tools that enable deduction of a set of con-

clusions from a set of observations. Decision trees are used for visual and explicit

representation in decision analysis. In Machine Learning, each node in a decision tree

represents an attribute and each branch is the outcome of the conditional statement

on the attribute. Decision trees can be viewed as the output of the mathematical

and computational algorithms used to categorize and generalize a dataset. Decision

trees are used ubiquitously throughout the field of medicine, especially in the classi-

fication of diseases based on the structure of a↵ected tissue and molecular attributes.

Although not perfect, decision trees provide an easy to understand representation

and heuristic to complex problems and questions.

Rules in data mining can be characterized as if-then patterns found within

the data. Classification rules enable the mapping of an instance or an example to

a class or a category. The precondition of a rule is the series of branches that is

traversed to reach the consequent, which is the conclusion or the class that apply to

the instances covered by the rule. It is easy to generate a set of classification rules
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Figure 4.3: Creation of rules from a decision tree (Source: Freitas, et al. [20]).

directly o↵ a decision tree. A simple pass through the branches of the decision tree

from the root to the leaf is enough to generate a rule. This procedure is illustrated

in Figure 4.3.

The C4.5 algorithm summarized in Section 4.2.2, produces a decision tree

based on the molecular attributes of each cluster. The consequent of the tree is

the cluster the instance in question belongs to. Each of the node in the tree is

a molecular attribute and each of the branches from the node is the path of a

conditional statement on the node. A traversal from the root to each of the leaves

of the tree will produce unique rules that allow for the classification of instances

into the clusters. The classification rules are extracted form the C4.5 generated tree

using the PART rule generator in Weka [56].
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4.2.2 C4.5 : Divide and Conquer

The C4.5 algorithm is a supervised learning algorithm that allows for the clas-

sification of new instances from a training set. The algorithm uses a univariate

decision tree approach where splitting of the decision tree is based on a single at-

tribute at each node. The algorithm utilizes the concept of ‘entropy,’ which is the

measure of disorder of the data [8]. Weka implements a java version of C4.5 called

J48.

Figure 4.4: Entropy is a measure of how ‘impure’ the data is.

Entropy in data mining is the measure of how much disorder or uncertainty is

in the data. As depicted in Figure 4.4, a low entropy is characteristic of homogeneous

data where most of the instances belong to a particular class. High entropy, on the

other hand, has uncertainty and variance among the classification of the instances.

Entropy is defined as

E(X) = �
jX

i=1

|ni|
|n| log2

|ni|
|n| (4.1)
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where j is the total number of classes, |ni| is the number of instances of class i and

|n| is the total number of instances in the training set in a particular node.

Information gain is described as the amount of information that is gained

by knowing the value of an attribute. That is, information gain determines which

attribute(s) in a set of training attributes is most useful for distinguishing between

the classes to be classified. A decision tree is constructed on those attributes which

return the highest information gain. Information gain is a function of the entropy of

all instances of the parent node and the entropy of the instances split on a specific

attribute. Information gain is defined as

Gain(p, x) = E(p)� E(l|x)� E(r|x) (4.2)

where p is the training set before the split i.e. parent node, l and r are the subset of

the training set that is split based on the value of the attribute x i.e. child nodes.

The C4.5 algorithm uses entropy and information gain to divide the training set

into more homogeneous subsets to create decision tress [8]. A step-by-step summary

of the algorithm is given below.

1. Check if all instances belong to the same class, then the tree is simply a leaf

labeled with the class.

2. Otherwise, for each attribute, calculate the information gain.

3. The attribute with the highest information gain will be the best splitting

attribute and the parent node.
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4. Repeat steps 2 and 3 at each parent node recursively.

5. Stop splitting when all instances are classified.

6. Prune to generalize the decision tree.

Decision trees created from a training set often contains unnecessary structure and

bias. Pruning is done to simplify and generalize the decision tree. C4.5 adopts the

strategy of subtree replacement where a subtree is replaced by a leaf node if overall

information gain is only marginally decreased. Although the accuracy of the tree on

the training set is decreased, pruning may increase the accuracy on an independently

chosen test set.

Select molecular information of all the patient instances from the clustering

data were uploaded, along with the cluster label, into Weka. The C4.5 algorithm

was employed to create a decision tree based on the input data. The PART rule

generator was used to traverse the tree and generate rules. The results of the decision

tree analysis is discussed in the following section.

4.3 Decision Tree Results

4.3.1 Decision Tree Input

Clinical trials are experiments conducted to understand the e�cacy of a new

drug or treatment on human subjects. The NCI-MATCH program is the primary

cancer clinical trial at the National Cancer Institute [31]. The program chooses

patients based on the genetic makeup of their tumors. Genomic sequencing and
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other tests are used to determine the genetic makeup of the cancer cells in the

patients and patients with identifiable genetic changes that match with treatments

in the trial then receive that treatment. The clinical trial assays a subset of the

genome identified to be cancer driver genes. This subset of genes will be used as the

input to the decision tree.

A whole-genome sequencing of patients in a clinical trial is time consuming

and expensive. As such, certain biomarker assays were created that target specific

genes that play an important role in cancer development. Oncomine assays are

multi-biomarker genomic assays designed for cancer research and used as part of

NCI-MATCH [44]. The assay detects mutations, insertions and deletions and copy

number changes in almost 120 unique cancer driver genes.

Rather than using the whole genome, the oncomine cancer driver genes were

used; significantly reducing the genes per patient from approximately 11,000 to

115 genes. This allows for the targeting of cancer driver genes when creating the

decision tree and is a better representation of the data a physician will have when

choosing treatment options. For each patient view (mRNA, mutation, copy number

and methylation), the cancer driver genes were selected and stored in a csv file.

This essentially pruned the data from having approximately 44,000 attributes to

451 attributes for each patient. A schematic of the selection of genes is presented in

Figure 4.5. Each instance in the training set now contained the select cancer driver

gene data for each patient view and the cluster label used for classification. The csv

file was then saved as an ARFF file using the ARFF-viewer tool in Weka and was

inputted into the C4.5 algorithm.
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Figure 4.5: Schematic of selecting attributes for decision tree input.

4.3.2 Decision Tree Rules

The PART rule generator extracted rules from the decision tree created by the

C4.5 algorithm. A total of 75 rules were extracted from the training set. Figure 4.6

shows the first three rules outputted from the C4.5 algorithm. The precondition of

the rules is a series of molecular attributes ANDed together and the consequent is

the cluster to which a sample would belong to based on the rules. The number to the
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left in the parenthesis is the number of instances classified correctly and the number

to the right is the number of instances incorrectly classified based on the rule. For

example in Rule 1 in Figure 4.6, if all the molecular attributes and respective values

are satisfied in a sample, then the sample would be classified into cluster 4. A total

of 110 instances were classified using this rule. The remainder of the rules can be

found in the Appendix.

=== Classifier model (full training set) ===

PART decision list
------------------

STAT3_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
PPP2R1A_scnaq <= 1 AND
DDR2_scnaq > 0 AND
ATRX_scnaq <= 1 AND
FOXL2_scnaq <= 1 AND
NFE2L2_scnaq <= 1: Four (110.0)

DDR2_scnaq > 1 AND
JAK1_scnaq > 0 AND
ERBB2_scnaq <= 0 AND
NRAS_scnaq <= 1 AND
GNA11_scnaq <= 0: Six (6.0/1.0)

DDR2_scnaq > 1 AND
JAK1_scnaq > 0 AND
ERBB2_scnaq <= 0 AND
MAP2K2_scnaq <= 1 AND
JAK1_scnaq > 1 AND
EZH2_mRNA > 0 AND
NTRK3_mRNA <= 1: Three (27.0)

Figure 4.6: The first three rules out of seventy five outputted by the C4.5 algorithm.

As with any model, the decision tree model does not encapsulate the training

set perfectly. The model had an accuracy of 59.32%. The decision tree was able
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to classify 595 out of 1003 instances into the correct clusters using the rules. 408

out of 1003 instances were classified into the wrong cluster based on the rules.

Multiple attempts of running the algorithm on the data set produced the same

result suggesting that this is the best output of the algorithm.

Given these results, the decision tree however was able to give new insights

into the molecular data. Out of the four patient views (mRNA, mutation, copy

number and methylation), the rules were primarily composed of copy number and

mRNA attributes. This potentially suggests that mRNA and copy number data

provide more information to partition the instances into clusters than mutation

and methylation data. However, more than likely, this could be a consequence of

mutation and methylation patient views lacking data as discussed in Section 3.1.1.

Of the 451 di↵erent attributes, only 143 attributes were deemed relevant to the

partition of the clusters. An analysis of these attributes and their function can

provide more insights into pathways of cancer development in brain cancers. Also

of note, out of the mutation data only the IDH mutation was represented in the

rules, suggesting that indeed IDH mutation plays an important role in brain cancer

development.

A confusion matrix is also outputted as part of the results. A confusion matrix

is a table that is created to describe the performance of a classification model. The

confusion matrix in Figure 4.7 suggests that cluster Four, which had the highest

number of p-values less than 0.05, was the best classified cluster with 90% of the

instances classified correctly. Clusters Five, Six and Seven had the next best classi-

fication results with nearly 60% of the instances classified correctly. The remaining
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=== Confusion Matrix ===

a b c d e f g h <-- classified as
71 5 10 12 10 6 5 11 | a = One
6 53 6 0 17 18 9 10 | b = Two
14 11 68 0 4 17 4 16 | c = Three
10 1 0 110 0 0 0 1 | d = Four
8 12 3 0 81 2 19 14 | e = Five
9 19 6 0 3 81 3 4 | f = Six
4 7 10 2 13 7 83 3 | g = Seven
13 6 11 3 16 3 5 48 | h = Eight

Figure 4.7: Confusion matrix from C4.5 output which depicts where each instance
from each cluster was classified into based on the rules.

clusters fared worse with less than 55% accurate classification. Clusters Two and

Eight had the worst accuracy with only 44% and 40% correct classification respec-

tively. Considering clusters Two and Eight were statistically distinct from 6 out of

7 of the other clusters, the classification results are surprising. This implies that the

attributes that contribute to the di↵erent prognosis of these clusters are not being

captured properly in the decision tree model or that the subset of the genome used

in the assay is not su�cient to capture the partitions.

Even with accuracy lacking for clusters Two and Eight, the decision tree model

provides a good framework to classify the majority of samples into a majority of

the clusters. Unlike other high accuracy Machine Learning (ML) models which use

neural nets and other learning schemes, decision tree models output the actual func-

tion for classification via the rules. Most ML algorithms are black box algorithms

with hard to understand internal behavior; they provide the classification result but
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not the mapping function. The availability of the rules from a decision tree model

allows clinicians to validate and test the rules and allows for a straightforward im-

plementation of a semantic model, which is discussed in the next chapter.

4.4 Discussion

This chapter provided the classification method used to extract a decision tree

from the clustering results. Classification determined select molecular attributes

of each cluster allowing for any new data to be classified immediately rather than

using the k-mean clustering again. The C4.5 algorithm, implemented as J48 in

Weka, employed the concept of data entropy to partition the instances of patient

gene data. The classification, although not perfect, provides a set of mapping rules

to classify the majority of instances into the clusters.

The clustering and the classification framework provides a viable method to

handle high-dimensional patient data and to extract usable attributes based on

patient similarity. As more data is made available, this application and the results

of the method will become more robust to be used for clinical purposes. A semantic

model can now be created containing the infrastructure to model the Glioma domain

and data. A semantic model, as discussed in the following chapter, allows for the

representation of the Glioma domain along with the clustering and classification

results in a dynamic model.
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Chapter 5: Ontologies Supported by Data

5.1 Semantic Model Software Architecture

The software organization for the development and generation of the semantic

model is given in Figure 5.1. The semantic model consists of glioma-specific ontolo-

gies, instances of data and rules derived from the classification results. The soft-

ware model is implemented in Java with the ontology created using the RDF/OWL

framework and the data imported from text files.

Figure 5.1: Software Architecture of generation of semantic models.
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Generation of the semantic model begins with the creation of domain-specific

ontologies in OWL. In this case, a glioma, TCGA patient and CCLE cell line ontol-

goies are created to capture the domain space. Each ontology is given ontological

descriptions, hierarchy of classes and data and object properties. Classification rules

from the data mining investigation and domain-specific constraints are then trans-

formed into Jena rules to be read by the model. Finally, data is ingested into the

model from TCGA and CCLE text files. The Data model reads and imports the

data. A visitor design pattern is implemented to transfer the data model to the Jena

Semantic model. Once all the components of the model are created, the semantic

rules can be applied to the model and applications can visit, query and reason with

the model.

5.2 Glioma Ontology Models

Protege is an open source suite of tools that facilitate the building of knowledge

bases through ontologies [37]. It is used to create domain ontologies, specify domain

relationships, datatype properties, object properties and specify constraints on said

domains and properties. Protege was used in the creation of the glioma-specific

ontology. A brief and simplified description of each of the ontologies is provided

below.

Figure 5.2 provides a simplified representation of the Glioma ontology. The

Glioma class is further broken down into the IDH wild-type and IDH mutation sub-

classes consistent with literature [11] and classification results. The IDH wild-type
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and mutation classes are then stratified further based on the classification results

from Section 3.2. This ontology captures the domain relationship via sub-class

properties and allows reasoning of instances assigned from the leaf classes up to the

root Glioma class.

Figure 5.2: Glioma Ontology with clusters from classification results.

Figure 5.3 presents the simplified representation of the TCGA patient ontology.

The ontology incorporates patient clinical data and the molecular attributes deemed

important by the data mining investigation. Note that only a select few molecular

attributes are shown in the figure. This ontology enables the ingestion of patient

instances from the TCGA patient data into the semantic model and allows mapping

of patients to the glioma clusters based on the datatype properties of each instance.

The mapping is defined via the hasCluster object property.

Figure 5.4 presents the simplified representation of the CCLE cell line ontology.
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Figure 5.3: TCGA patient ontology.

The ontology incorporates all 143 molecular attributes considered relevant by the

data mining investigation. Note that only a select few molecular attributes are

shown in the figure. The cell line ontology enables the creation of cell line instances

which are ingested from the CCLE data model. Once all cell line instances are

created, the rules will map each cell line to a Glioma cluster via the hasCluster

object property.

The ontologies provide a simplified but adequate representation of the Glioma

domain and allow data to be created as instances of the ontology. New patient

data can now be ingested into the model and with the help of the rules can be

mapped immediately to the relevant clusters. Likewise, as more cell line data is

produced, it can also be incorporated into the model seamlessly. Although the
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Figure 5.4: CCLE cancer cell line ontology.

current ontologies are created for the purposes of matching cell lines to clusters,

more semantic description, domains and data can be added to the model in the

future. As the model is refined and given more functionality, it can be used for

more complex tasks and narrower reasoning.

5.3 Mapping of Preclinical Models

We proposed that a semantic approach will enable the rational selection of pre-

clinical models and patients for clinical trials. The Glioma semantic model provides

a framework to achieve these goals. The Glioma ontologies along with the rules
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allow for the ingestion of patient and cell line model data and allow for the map-

ping and selection of models based on molecular similarity. This section provides a

schematic of the mapping and the results of the selection of preclinical models for

each cluster.

prefix af: <http://www.nih.gov/abraham/GliomaOntology.owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

//Propagation Rule 01: Propogate Class hierarchy...
[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x, ?y) ->
[(?a rdf:type ?y) <- (?a rdf:type ?x)] ]

//Rule 01:
[ Rule01: (?x rdf:type af:Ccle) (?x af:hasSTAT3_scnaq ?stat)
(?x af:hasMAGOH_scnaq ?ma) (?x af:hasPPP2R1A_scnaq ?pp)
(?x af:hasDDR2_scnaq ?dd) (?x af:hasATRX_scnaq ?atr)
(?x af:hasFOXL2_scnaq ?fox) (?x af:hasNFE2L2_scnaq ?nef)
greaterThan(?stat, 1.0) lessThan(?ma, 1.0)
greaterThan(?ma, -1.0) lessThan(?pp, 2.0)
greaterThan(?pp, -1.0) greaterThan(?dd, 0.0)
lessThan(?atr, 2.0) greaterThan(?atr, -1.0)
lessThan(?fox, 2.0) greaterThan(?fox, -1.0) lessThan(?nef, 2.0)
greaterThan(?nef, -1.0) -> (?x af:hasCluster af:ClusterFour) ]

//Rule 03:
[ Rule03: (?x rdf:type af:Ccle) (?x af:hasDDR2_scnaq ?dd)
(?x af:hasJAK1_scnaq ?jak) (?x af:hasERBB2_scnaq ?erb)
(?x af:hasMAP2K2_scnaq ?map) (?x af:hasEZH2_mRNA ?ez)
(?x af:hasNTRK3_mRNA ?nt) greaterThan(?dd, 1.0)
greaterThan(?jak, 0.0) equal(?erb, 0.0) le(?map, 1.0)
greaterThan(?map, -1.0) greaterThan(?ez, 0.0) le(?nt, 1.0)
greaterThan(?nt, -1.0) -> (?x af:hasCluster af:ClusterThree)]

Figure 5.5: Classification Rules transformed to Jena Rules.

Classification rules from the data mining investigation was first transformed

into the standard format of Jena Rules. Figure 5.5 depicts the class propagation

and classification rules in the Jena format. The propagation rule propagates class

hierarchy; placing constraints on the type an instance can be. The remaining rules
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are classifier rules. For example, in Rule 01, the reasoner traverses the RDF knowl-

edge graph of CCLE instances and checks if the rule constraints are satisfied for

each instance. If the rules are satisfied then the CCLE instance is mapped to the

ClusterFour class in the Glioma Ontology via the hasCluster object property. The

rules can be executed at any time creating a dynamic and responsive model.

Figure 5.6 depicts the graph transformation that occurs when a rule is sat-

isfied. In the figure, an instance of the CCLE class with its particular molecular

attribute satisfies the rule which creates an object property from the instance to

the ClusterTwo class instance. From a semantic point of view, the CCLE instance

now has access to all class descriptions and properties of ClusterTwo and its parent

classes. Once all the rules from the classification results are transformed into Jena

rules, they can be executed sequentially and all instances in the Glioma ontology

satisfying the rules will be mapped to the relevant cluster.

Tables 5.1 and 5.2, provides the results of the mapping of preclinical models

to each cluster. The table provides the IDs of CCLE models which responded to

each cluster based on the classification rules. Once all the rules were executed, those

CCLE instances that satisfied the rules were then assigned an object property to

the relevant cluster. An iterator was then used to iterate through the CCLE models

for each cluster. These set of models for each cluster have the closest molecular

similarity to the patients in each of the clusters. The hope is that these subset of

models will lead to better understanding of the e�cacy of treatments for a patient

diagnosed into the respective cluster. These models could potentially provide better

prognostic insights into how well the patient might fare to experimental treatment.
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Figure 5.6: Mapping of CCLE instance to Cluster.
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Considering each cluster has di↵erent overall survivability, preclinical trials can also

be tailored to each cluster of patients narrowing the cohort for the trial. With the

selection of preclinical models based on the molecular basis of patients with di↵erent

prognosis, the translational barrier of preclinical to clinical trials can be shortened.

Cluster ID
Num. of

CCLE models
CCLE IDs

1 18

ACH-000927, ACH-000350, ACH-000345, ACH-000865
ACH-000596, ACH-000769, ACH-000444, ACH-000934
ACH-000523, ACH-000675, ACH-000379, ACH-000816
ACH-000203, ACH-000490, ACH-000461, ACH-000147

ACH-001302, ACH-001740

2 13

ACH-000844, ACH-000731, ACH-000690, ACH-000190
ACH-000523, ACH-000675, ACH-000870, ACH-000399
ACH-000871, ACH-000816, ACH-000358, ACH-000443

ACH-000232

3 34

ACH-000948, ACH-000956, ACH-000052, ACH-000880
ACH-000191, ACH-000245, ACH-000402, ACH-000867
ACH-000805, ACH-000256, ACH-000278, ACH-000352
ACH-000196, ACH-000668, ACH-000178, ACH-000724
ACH-000671, ACH-000595, ACH-000583, ACH-000849
ACH-000391, ACH-000666, ACH-000841, ACH-000610
ACH-000789, ACH-000116, ACH-000751, ACH-000617
ACH-000409, ACH-000090, ACH-000790, ACH-000087

ACH-000955, ACH-000430

4 13

ACH-000788, ACH-000248, ACH-000120, ACH-000253
ACH-000756, ACH-000631, ACH-000769, ACH-000733
ACH-000436, ACH-000363, ACH-000312, ACH-000661

ACH-001111

Table 5.1: CCLE models which responded to classification rules for clusters 1
through 4.
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Cluster ID
Num. of

CCLE models
CCLE IDs

5 24

ACH-000649, ACH-000593, ACH-000516, ACH-000392
ACH-000644, ACH-000978, ACH-000633, ACH-000575
ACH-000971, ACH-000994, ACH-000721, ACH-000178
ACH-000801, ACH-000632, ACH-000250, ACH-000313
ACH-000319, ACH-000980, ACH-000434, ACH-000121
ACH-000614, ACH-000811, ACH-000686, ACH-001302

6 11
ACH-000880, ACH-000867, ACH-000111, ACH-000196
ACH-000595, ACH-000573, ACH-000666, ACH-000177

ACH-000751, ACH-000617, ACH-000090

7 16

ACH-000940, ACH-000402, ACH-000805, ACH-000903
ACH-000239, ACH-000357, ACH-000176, ACH-000200
ACH-000062, ACH-000398, ACH-000149, ACH-000908
ACH-000898, ACH-000567, ACH-000656, ACH-000958

8 31

ACH-000046, ACH-000927, ACH-000457, ACH-000253
ACH-000868, ACH-000739, ACH-000799, ACH-000472
ACH-000476, ACH-000858, ACH-000604, ACH-000685
ACH-000301, ACH-000390, ACH-000019, ACH-000058
ACH-000453, ACH-000737, ACH-000675, ACH-000646
ACH-000442, ACH-000181, ACH-000465, ACH-000341
ACH-000016, ACH-000623, ACH-000344, ACH-000686

ACH-000147, ACH-000568, ACH-001053

Table 5.2: CCLE models which responded to classification rules for clusters 5
through 8.

5.4 Discussion

This chapter introduced the Semantic Web framework and the application

of the framework to the Glioma Domain. The clustering and classification results

are now represented in a simplified Glioma semantic model. The semantic model

consists of the Glioma ontology, the patient ontology, the cell line ontology and

instances of data. We present the Glioma semantic model as a dynamic model

into which new data can be ingested and reasoned for the purposes of mapping to
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prognostically relevant clusters.

The power of the Semantic Web lies in its ability to integrate di↵erent domains

and allow reasoners to reason over these domains. This semantic model serves to

be a small foundation to build a larger, more comprehensive model of the Glioma

domain. Ontologies from disparate domains such as patient symptoms and patient

microbiome can now be created and integrated into the semantic model and rules

can be executed which take into account these disparate domains. The development

of the semantic model can ultimately become a powerful tool in the practice of

precision medicine.
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Chapter 6: Conclusions and Future Work

6.1 Conclusion

As advances in medical technologies continue to rapidly grow, it is impera-

tive to create frameworks and algorithms that utilize these new streams of data to

ultimately help the patient. In this paper, we provide a semantic model coupled

with a machine learning framework to turn high dimensional patient data into a

dynamic model. We provide an application of this model to bridge the gap between

the disease and preclinical space. This Glioma specific model provides a foundation

onto which other domains can be incorporated to create an all-encompassing patient

model to aid in the practice of precision medicine. The human body is a true system

of systems, and frameworks proposed in this thesis as well as others will be vital to

the understanding of this complex system.

6.2 Future Work

The work done in this thesis makes progress towards a digital twin of a patient.

The digital twin architecture for personalized medicine, presented in Figure 1.8 and

Figure 1.10, lay the foundation to incorporate domains relevant to the treatment of a
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patient. These high-level schematics provide a framework to use semantic modeling

to serve as an ‘operating system’ for patients and opens new digital ecosystems for

improved services and treatment.

Symptoms management apps such as GlioNCI [45], provide an interface for

patients to report their symptoms and their quality of life. And with the advent of

smart wearable technologies, basic clinical instruments such as the electrocardiogram

and other sensing instruments are within the reach of nearly every patient. The

digital twin architecture enables the integration of these apps and other patient

sensing systems to create a comprehensive and real-time model of a patient. We

envision a comprehensive model, validated by medical practitioners, incorporating

patient data, real-time patient dynamics, ontologies, models and rules governing

treatment and diagnosis to aid future clinicians in practicing precision medicine.
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Appendix A: Classification Rules

The following is the full set of rules outputted by the C4.5 Decision Tree

algorithm.

Classifier model (full training set)

PART decision list
------------------
1
STAT3_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
PPP2R1A_scnaq <= 1 AND
DDR2_scnaq > 0 AND
ATRX_scnaq <= 1 AND
FOXL2_scnaq <= 1 AND
NFE2L2_scnaq <= 1: Four (110.0)
2
DDR2_scnaq > 1 AND
JAK1_scnaq > 0 AND
ERBB2_scnaq <= 0 AND
NRAS_scnaq <= 1 AND
GNA11_scnaq <= 0: Six (6.0/1.0)
3
DDR2_scnaq > 1 AND
JAK1_scnaq > 0 AND
ERBB2_scnaq <= 0 AND
MAP2K2_scnaq <= 1 AND
JAK1_scnaq > 1 AND
EZH2_mRNA > 0 AND
NTRK3_mRNA <= 1: Three (27.0)
4
STAT3_scnaq <= 0 AND
IDH_mut > 0 AND
MAGOH_scnaq > 0 AND

TP53_scnaq <= 0 AND
MAP2K2_scnaq <= 0 AND
SIRT2_scnaq > 0 AND
KLF4_scnaq <= 1: Six (57.41)
5
H3F3A_scnaq > 1 AND
NRAS_scnaq > 1 AND
HRAS_scnaq <= 0 AND
DDR2_scnaq > 1 AND
MAP2K4_mRNA <= 1 AND
AKT3_scnaq > 1 AND
NTRK3_mRNA <= 1 AND
MAP2K2_mRNA > 0: Three (28.0)
6
PPM1D_scnaq > 1 AND
MAGOH_mRNA <= 0 AND
ATRX_mRNA <= 1 AND
KLF4_mRNA <= 1 AND
MAP2K2_mRNA <= 1: Eight (26.0/2.0)
7
PPM1D_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
ERBB2_scnaq > 0 AND
SPOP_mRNA > 0 AND
GATA2_scnaq > 0 AND
RAF1_mRNA > 0 AND
HRAS_mRNA > 0 AND
MYCN_mRNA > 0: One (17.0)
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8
H3F3A_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
SMO_mRNA > 1 AND
GATA2_mRNA > 1: Three (3.0)
9
STAT3_scnaq <= 0 AND
CCND1_scnaq <= 1 AND
SMARCB1_scnaq <= 1 AND
H3F3A_scnaq <= 1 AND
IDH_mut <= 0 AND
RAF1_scnaq <= 1 AND
EZH2_scnaq > 1 AND
KDR_scnaq > 0: Seven (45.64)
10
H3F3A_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
SPOP_mRNA <= 0: Eight (8.0/1.0)
11
DDR2_scnaq > 1 AND
JAK1_scnaq <= 0 AND
CSF1R_mRNA <= 1 AND
NRAS_mRNA <= 1 AND
RAF1_mRNA > 0 AND
CCND3_mRNA > 0 AND
RAF1_mRNA > 1: One (10.0)
12
H3F3A_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
SIRT2_scnaq <= 1 AND
ERCC2_mRNA <= 1 AND
CIC_mRNA > 0: One (7.0/1.0)
13
PPM1D_scnaq > 1 AND
MAGOH_scnaq <= 0 AND
RHOA_scnaq <= 1 AND
AR_mRNA <= 0: Four (9.0/1.0)
14
DDR2_scnaq > 1 AND
JAK1_scnaq <= 0 AND
STAT3_scnaq > 0 AND
ROS1_scnaq <= 1: Four (4.0/1.0)

15
DDR2_scnaq > 1 AND
JAK1_scnaq <= 0 AND
CCND3_mRNA > 1: Five (3.0)
16
DDR2_scnaq > 1 AND
GNAS_mRNA > 0 AND
ERBB2_scnaq <= 0 AND
GNAQ_scnaq <= 1 AND
EZH2_mRNA <= 1: Seven (12.0/1.0)
17
DDR2_scnaq > 1 AND
RAF1_mRNA <= 0 AND
SETD2_mRNA <= 1 AND
FLT3_scnaq <= 1 AND
GNAS_mRNA <= 0 AND
SMAD4_mRNA <= 1 AND
CTNNB1_mRNA <= 1: Eight (15.0/1.0)
18
DDR2_scnaq > 1 AND
PPP2R1A_scnaq > 1 AND
SMO_mRNA > 1 AND
MAX_scnaq <= 1: Three (9.0/1.0)
19
DDR2_scnaq > 1 AND
PPP2R1A_scnaq > 1 AND
SMO_mRNA <= 1 AND
HRAS_scnaq <= 1 AND
MAGOH_mRNA > 0: Three (14.0/1.0)
20
DDR2_scnaq > 1 AND
PPP2R1A_scnaq > 1 AND
GNAQ_mRNA > 0: Two (5.0)
21
DDR2_scnaq > 1 AND
PPP2R1A_scnaq > 1 AND
AKT3_mRNA <= 0: Seven (3.0)
22
DDR2_scnaq > 1 AND
NTRK1_scnaq <= 1 AND
CCND2_mRNA <= 1: Six (3.0/1.0)
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23
DDR2_scnaq > 1 AND
ERBB2_scnaq <= 0 AND
BTK_mRNA <= 1 AND
SIRT2_mRNA <= 1: Three (11.0)
24
DDR2_scnaq > 1 AND
ERBB2_scnaq > 0 AND
NRAS_mRNA <= 0 AND
AKT2_mRNA <= 0: Three (2.0)
25
DDR2_scnaq > 1 AND
ERBB2_scnaq > 0 AND
NRAS_mRNA > 0 AND
SETD2_mRNA <= 0 AND
GATA2_scnaq > 0: Three (8.0)
26
DDR2_scnaq > 1 AND
RAF1_mRNA > 0 AND
SETD2_mRNA > 0 AND
IDH2_mRNA > 0 AND
NRAS_scnaq > 1 AND
MAPK1_mRNA > 0 AND
KDR_scnaq <= 1: One (21.0)
27
PPM1D_scnaq > 1 AND
CHEK1_scnaq > 0 AND
SMARCA4_mRNA > 0 AND
PIK3CA_mRNA > 0 AND
AXL_scnaq > 1 AND
GNA11_mRNA > 1: Two (5.0)
28
PPM1D_scnaq > 1 AND
GNAS_scnaq <= 0 AND
DDR2_scnaq <= 1 AND
NF1_mRNA > 0 AND
AXL_scnaq <= 1 AND
CBL_mRNA <= 1: One (12.0)
29
PPM1D_scnaq > 1 AND
GNAS_scnaq <= 0 AND
NTRK2_mRNA > 0 AND
NTRK3_mRNA <= 1: Six (10.0)
30
PPM1D_scnaq > 1 AND
RAF1_mRNA <= 0 AND
CBL_scnaq > 0 AND
HIST1H3C_mRNA > 0: Eight (10.0/1.0)
31
PPM1D_scnaq > 1 AND

RAF1_mRNA <= 0 AND
AKT1_meth <= 1: Seven (2.0)
32
PPM1D_scnaq > 1 AND
CSF1R_scnaq > 1 AND
CDK6_mRNA > 0 AND
U2AF1_mRNA > 0: Three (8.0)
33
PPM1D_scnaq > 1 AND
NTRK1_mRNA <= 1 AND
MET_mRNA <= 1 AND
NRAS_mRNA > 0 AND
CCND2_mRNA > 0 AND
MED12_mRNA > 0: One (25.0/1.0)
34
MAP2K4_scnaq > 0 AND
MYC_scnaq > 1 AND
NRAS_scnaq > 0 AND
AKT3_scnaq <= 1 AND
JAK1_mRNA > 0 AND
CHEK2_scnaq > 0 AND
MAX_scnaq > 0: Two (35.0)
35
PPP2R1A_scnaq > 1 AND
IDH_mut > 0 AND
CIC_scnaq > 1 AND
NRAS_scnaq > 0 AND
SOX2_mRNA > 0 AND
BTK_mRNA > 0 AND
JAK1_mRNA > 0 AND
ATRX_scnaq > 0 AND
TP53_meth <= 1: Two (20.83/1.22)
36
MAP2K4_scnaq > 0 AND
FOXL2_scnaq <= 1 AND
DDR2_scnaq <= 1 AND
CCND1_scnaq <= 1 AND
JAK1_scnaq <= 1 AND
KRAS_scnaq <= 1 AND
CCND2_scnaq <= 1 AND
FGFR1_scnaq <= 1 AND
CCND3_scnaq > 0: Five (62.0/2.0)
37
PPP2R1A_scnaq > 1 AND
CCND1_scnaq <= 1 AND
AKT2_scnaq > 1 AND
KDR_scnaq > 0 AND
AKT1_scnaq > 1 AND
NF1_scnaq <= 0: Seven (6.0)
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38
GNA11_scnaq > 1 AND
SMARCA4_scnaq <= 1 AND
AKT2_mRNA <= 0: Two (2.0/1.0)
39
GNA11_scnaq > 1 AND
SMARCA4_scnaq > 1 AND
MAP2K4_scnaq <= 0 AND
NRAS_scnaq <= 1 AND
EGFR_scnaq > 0 AND
KIT_scnaq > 1: Seven (16.78/0.78)
40
IDH_mut > 0 AND
NRAS_scnaq <= 0 AND
AKT2_scnaq <= 0 AND
ERBB2_mRNA <= 1: One (13.63/0.41)
41
SMARCB1_scnaq > 1 AND
NFE2L2_mRNA > 1 AND
ARAF_scnaq > 0 AND
EGFR_scnaq <= 1 AND
FGFR1_mRNA > 0: Five (13.59)
42
HRAS_scnaq <= 0 AND
NRAS_scnaq > 0 AND
SIRT2_scnaq > 0 AND
JAK3_mRNA > 0 AND
NFE2L2_scnaq > 1 AND
FGFR1_mRNA > 0: Six (13.0/1.0)
43
SMARCB1_scnaq > 1 AND
NFE2L2_mRNA > 1 AND
GNAS_mRNA <= 0: Two (5.7/1.0)
44
SMARCB1_scnaq > 1 AND
ROS1_mRNA > 0 AND
CCND2_mRNA <= 1 AND
PIK3CB_mRNA <= 1 AND
FGFR4_mRNA > 0: Eight (18.0)
45
HRAS_scnaq > 0 AND
NF1_scnaq > 1 AND
CDK4_mRNA > 0 AND
TERT_mRNA > 0 AND

CIC_mRNA > 0: Eight (7.0)
46
GNA11_scnaq > 1 AND
ATRX_scnaq > 0 AND
H3F3A_scnaq <= 1 AND
ROS1_scnaq > 0 AND
MAP2K1_scnaq > 0 AND
EGFR_scnaq <= 1 AND
XPO1_scnaq <= 1 AND
HNF1A_scnaq > 0: Five (19.0)
47
MYD88_scnaq > 1 AND
CHEK2_scnaq > 1 AND
MAPK1_mRNA <= 1: One (4.0/1.0)
48
MYD88_scnaq > 1 AND
CTNNB1_scnaq > 1 AND
CCND1_scnaq > 1 AND
SMAD4_mRNA > 0 AND
GNA11_scnaq <= 1 AND
IGF1R_mRNA > 0: Six (16.59/1.59)
49
HRAS_scnaq <= 0 AND
NRAS_scnaq > 0 AND
MDM2_mRNA <= 1 AND
PDGFRA_scnaq <= 1 AND
BTK_mRNA > 0 AND
CCND3_scnaq <= 1: Two (15.59/0.59)
50
HRAS_scnaq <= 0 AND
NRAS_scnaq > 0 AND
CHEK2_mRNA > 0 AND
CDK4_scnaq <= 0 AND
NTRK1_mRNA > 0: Six (7.0/1.0)
51
HRAS_scnaq <= 0 AND
GNA11_scnaq > 1 AND
CCND2_mRNA > 1: Seven (4.0)
52
HRAS_scnaq <= 0 AND
IGF1R_mRNA <= 1 AND
RB1_scnaq <= 1 AND
FOXL2_mRNA > 0: Three (19.0/2.0)
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53
PPP2R1A_scnaq > 1 AND
HRAS_scnaq > 0 AND
MYCN_mRNA <= 1 AND
MYC_scnaq <= 1 AND
RET_scnaq <= 1 AND
CCND1_scnaq <= 1 AND
SMO_mRNA > 0 AND
ERCC2_mRNA > 0 AND
NF1_mRNA <= 1: Seven (21.0)
54
STAT3_scnaq > 0 AND
DDR2_scnaq > 1 AND
MET_mRNA > 0: One (6.0/1.0)
55
STAT3_scnaq > 0 AND
DDR2_scnaq > 1 AND
AKT3_mRNA <= 1: Two (2.0)
56
STAT3_scnaq > 0 AND
DDR2_scnaq <= 1 AND
TP53_mRNA > 1 AND
KLF4_scnaq <= 1 AND
MYD88_mRNA > 1: Five (10.0/1.0)
57
STAT3_scnaq > 0 AND
DDR2_scnaq <= 1 AND
TP53_mRNA > 1 AND
SIRT2_mRNA > 0 AND
EGFR_scnaq <= 1 AND
EGFR_mRNA <= 1: One (8.0)
58
STAT3_scnaq > 0 AND
DDR2_scnaq <= 1 AND
SOX2_mRNA > 1 AND
ERBB4_mRNA > 0 AND
PIK3R1_scnaq <= 1: Two (12.7)
59
STAT3_scnaq > 0 AND
DDR2_scnaq <= 1 AND
SPOP_scnaq <= 0: Two (3.0/1.0)
60
SMARCA4_scnaq > 1 AND
PPM1D_scnaq <= 0 AND
MAPK1_mRNA > 0: Seven (8.18)
61
MYD88_scnaq > 1 AND
PTEN_scnaq > 0 AND
BRAF_scnaq > 0 AND
JAK2_mRNA > 0: Six (7.0)

62
MYD88_scnaq > 1 AND
ERBB2_scnaq <= 0: Seven (7.77/1.59)
63
PPP2R1A_scnaq > 1 AND
IDH_mut <= 0 AND
PDGFRA_mRNA <= 1 AND
ALK_scnaq > 0: Five (14.0)
64
PPP2R1A_scnaq > 1 AND
ATRX_mRNA > 1: Two (4.0)
65
PPP2R1A_scnaq <= 1 AND
NRAS_scnaq > 1 AND
KLF4_mRNA <= 0 AND
BRAF_mRNA > 1: Three (3.0)
66
PPP2R1A_scnaq <= 1 AND
SMARCA4_mRNA > 1 AND
ERBB2_mRNA > 0: Six (6.0/1.0)
67
PPP2R1A_scnaq > 1: Seven (3.0)
68
SMARCA4_mRNA > 1 AND
AXL_mRNA <= 0: One (2.59)
69
SETD2_scnaq <= 1 AND
RHEB_mRNA <= 1 AND
TP53_mRNA <= 1 AND
PPM1D_mRNA <= 1 AND
BRAF_mRNA <= 1: Eight (12.0)
70
RAC1_mRNA <= 0 AND
MAP2K1_mRNA > 1 AND
KLF4_scnaq <= 1: Five (6.0)
71
RAC1_mRNA > 0 AND
PPP2R1A_mRNA <= 1 AND
AKT1_scnaq <= 1 AND
CCND1_scnaq > 0 AND
GNA11_mRNA <= 1 AND
CDK4_mRNA <= 1: Five (9.0)
72
RAC1_mRNA > 0 AND
PPP2R1A_mRNA <= 1 AND
FLT3_mRNA <= 1: Two (9.0)
73
U2AF1_scnaq > 0 AND
RHEB_mRNA <= 1: Eight (8.0/1.0)
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Appendix B: Jaccard Algorithm

function [jaccardNum,jaccardDenom] = jaccard(dataset)
%jaccard: This funciton calcualtes the jaccard values b/w datasets
%For each columnn of data, simply take intersection/union

data = size(dataset, 2) - 1;
jaccardNum = ones(data, data)*-1;
jaccardDenom = ones(data, data)*-1;

%loop through columns first, then row
for i=2:1:size(dataset, 2)

for j=i+1:1:size(dataset, 2)
numerator = 0;
denom = 1;
%loop through row
for k = 1:1:size(dataset, 1)

%see if data is available
if (~isnan(dataset(k, i)) & ~isnan(dataset(k, j)))

denom = denom + 1;
%check if data is equal
if dataset(k, i) == dataset(k, j)

numerator = numerator + 1;
end

end
end
jaccardNum(i-1, j-1) = numerator;
jaccardDenom(i-1, j-1) = denom;
jaccardNum(j-1, i-1) = numerator;
jaccardDenom(j-1, i-1) = denom;

end
end
end

Figure B.1: Jaccard Algorithm implemented in matlab.
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Appendix C: Neo4j Cypher Queries

Counting all Nodes in the Database:
MATCH(n)
RETURN COUNT(n)

Identifying TCGA\CCLE Nodes:
MATCH(n:tcga)
RETURN COUNT (n)

Counting nodes with a certain numerical attribute:
MATCH(n:tcga)
WHERE n.propertyName <= value
RETURN COUNT(n)

Averaging numerical attributes:
MATCH(n:tcga)
WHERE n.propertyName <= value
RETURN avg(n)

Aggregating attributes:
MATCH(n:tcga)
WHERE n.property1 = value1 AND n.property2 = value2
RETURN COUNT(n)

Identifying relationships between tcga nodes:
MATCH (n:tcga)-[r:relationshipName]-(k:tcga)
WHERE n.property = value
RETURN COUNT(n)

Creating relationships between tcga nodes:
MATCH (n:tcga)-[r:relationshipName]-(k:tcga)
WHERE n.property = value
CREATE (n)-[r:newRelationship]->(k)
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