
Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Abstract Classes and Interfaces

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Fall Semester 2020

October 12, 2020

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Overview

1 Quick Review

2 Framework for Component-based Design

3 Abstract Classes

4 Working with Interfaces

5 Farm Worker Source Code

6 Five Applications
Two Factories making Widgets
Parsing and Evaluation of Functions with JEval
Using Interfaces in Spreadsheets
Horstmann’s Simple Graph Editor
Architecture for Block Interconnect System

Part 1

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

Motivating Ideas

Simplify the way we view the real world,

Provide mechanisms for assembly of complex systems.

Provide mechanisms for handling systems that are subject to
change.

Organizational and E�ciency Mechanisms

Interface

In
cr

ea
si

n
g

 s
p

ec
ia

li
za

ti
o

n

Input from
surrounding environment

General
concepts

Network of Communicating Objects Problem Domain Concepts organized
into a Class Hierarchy.

Messages

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Object-based Software

Basic Assumptions

Everything is an object.

New kinds of objects can be created by making a package
containing other existing objects.

Objects have relationships with other types of objects.

Objects have type.

Object communicate via message passing – all objects of the
same type can receive and send the same kinds of messages.

Objects can have executable behavior.

Objects can be design to respond to occurrences and events.

Systems will be created through a composition (assembly) of
objects.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Reiew: Objects and Classes

Working with Objects and Classes:

Collections of objects share similar traits (e.g., data, structure,
behavior).

Collections of objects will form relationships with other
collections of objects.

Definition of a Class

A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object

An object is an instance of a class.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

Key Design Tasks

Identify objects and their attributes and functions,

Establish relationships among the objects,

Establish the interfaces for each object,

Implement and test the individual objects,

Assemble and test the system.

Implicit Assumptions ! Connection to Data Mining

Manual synthesis of the object model is realistic for systems
that have a modest number of elements and relationships.

As the dimensionality of the problem increases some form of
automation will be needed to discover elements and
relationships.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for

Component-based Design

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for Component-based Design

Development for Reuse-Focused Design

W
at
er
fa
ll
de
ve
lo
pm

en
t

Requirements

Design

Library of Components

Iterations of analysis
and design.

Implementation of components.

Specification

time

New Design

Composition of components.

ti
m
e

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for Component-based Design

Simplified View of a Component Technology Supply Chain

Specifications Run-time EnvironmentComponent Library

Archiecture
Implementation

Specification
Component

Step 4

Specification

Composition Environment

Step 1 Step 2 Step 3

Implementation Requires

Techniques for describing the overall system architecture.

Definition of pieces in a way that facilitates assembly with
other pieces (e.g., lego blocks).

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for Component-based Design

Simple Component-based Software System

Component C’s

Component A

– is written to work with is an implementation of ...

.... are written and delivered independently

... external environment ...

specification
Component C’s

specification
Component B’s

implementation
Component B’s

implementation

Components B and C are defined via their specifications/interfaces.
Component A employs the services of compoments B and C.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

From Component- to Interface-based Design

During the early stages of design where the focus is on
understanding the roles and responsibilities of components within a
domain, ...

Interface-based Design

Interfaces are a specification for what an implementation should
look like.

Benefits:

Experience indicates that a focus on interfaces as a key design
abstraction leads to designs with enhanced flexibility.

Interface-based design procedures are particularly important
for the design and managed evolution of systems-of-systems –
e.g., cities.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Abstract Classes

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Abstract Classes

Abstract classes provide an abstract view of a real-world entity or
concept. They are an ideal mechanism when you want to create
something for objects that are closely related in a hierarchy.

Implementation

An abstract class is a class that is declared abstract. It may or
may not include abstract methods.

You cannot create an object from an abstract class – but they
can be sub-classed.

The subclasses will usually provide implementations for all of
the abstract methods in its parent class.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Example 1. E�cient Modeling of Shapes

A shape is a

High-level geometric concept that can be specialized into
specific and well-known two-dimensional geometric entities.

Examples: ovals, circles, rectangles, triangles, octogons, and
so forth.

Capturing Shape Data

There are sets of data values (e.g., vertex coordinates) and
computable properties (e.g., area and perimeter) that are
common to all shapes.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Capturing Shape Data

(x,y) location

x

(x,y) locationy
width

he
ig
ht

Computable properties: all shapes have an area, perimeter, an
(x,y) centroid and a position or (x,y) location.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Organizing Shapes into a Natural Hierarchy

<< abstract >>
Shape

Circle

Oval

Square

Rectangle

QuadrilateralTriangle

Squares are a specific type of rectangle, which, in turn, are a
specific type of quadralateral. Circles are a special type of oval.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Class Diagram for TestShape Program

public double perimeter();

public abstract double perimeter();
public abstract double area();
public abstract String toString();

Location c;

<<abstract>>
Shape

TestShape

Location

double x, y;

Circle Rectangle

double dRadius; double dSide1, dSide2;

public String toString();
public double area();
public double perimeter();

public String toString();
public double area();

All extensions of Shape will need to provide implementations for
the methods area(), perimeter() and toString().

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Implementation E�ciency and Convenience

Instead of solving problems with algorithms that work with
specific object types, algorithms can be developed for shapes.

1 Shape s[] = new Shape [3] ;
2

3 s[0] = new Rectangle(3.0, 3.0, 2.0, 2.0);
4 s[1] = new Circle(1.0, 2.0, 2.0);
5 s[2] = new Rectangle(2.5, 2.5, 2.0, 2.0);

The JVM will figure out the appropriate object type at run
time.

The abstract shape class reduces the number of dependencies
in the program architecture, making it ammenable to change
– trivial matter to add Triangles to the class hierarchy.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Walking Along an Array of Shapes
1 System.out.println("---------------------");
2 for (int ii = 1; ii <= s.length; ii = ii + 1) {
3 System.out.println(s[ii -1]. toString ());
4 System.out.println("Perimeter = " + s[ii -1]. perimeter ());
5 System.out.println("---------------------");
6 }

Program Output:

Rectangle : Side1 = 3.0 Side2 = 3.0
Perimeter = 12.0

Circle : Radius = 1.0 [x,y] = [2.0,2.0]
Perimeter = 6.283185307179586

Rectangle : Side1 = 2.5 Side2 = 2.5
Perimeter = 10.0

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Example 2. Class Diagram for Operation of a Retail Catalog

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Points to Note:

The central class is the Order.

Associated with each order are the Customer making the
purchase and the Payment.

Payments is an abstract generalization for: Cash, Check, or
Credit.

The order contains OrderDetails (line items), each with its
associated Item.

Also note:

Names of abstract classes, such as Payment, are in italics.

Relationships between classes are the connecting links.

	Quick Review
	Framework for Component-based Design
	Abstract Classes
	Working with Interfaces
	Farm Worker Source Code
	Five Applications
	Two Factories making Widgets
	Parsing and Evaluation of Functions with JEval
	Using Interfaces in Spreadsheets
	Horstmann's Simple Graph Editor
	Architecture for Block Interconnect System

