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Machine Learning Capabilities
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A Brief History
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1943: First neural networks invented (McCulloch and Pitts)
1958-1969: Perceptrons (Rosenblatt, Minsky and Papert).
1980s-1990s: CNN, Back Propagation.

1990s-2010s: SVMs, decision trees and random forests.
2010s: Deep Neural Networks and deep learning.
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Machine Learning Capabilities (1980-1990)

Expressive Power of a Neural Network Neural Network with Single Hidden Layer
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Machine Learning Capabilities (1997-2014)

Recurrent Neural Networks (RNN): Learn sequences in data streams (text, speech)

@ Hidden state “h” serves two
purposes:

“ * Make an output prediction.
« Represent features in the
previous steps ....
®

Key Features of LSTM:
Long Short-Term Memory (1997) Gated Recurrent Units (2014)
forget gate cell state reset gate « Standard RNN suffers from
vanishing gradients for modeling of
long-term dependencies.

« LSTM gives cells the ability to
remember values for long periods of
time.

» Gates regulate the flow of
information in / out of the cell, and

input gate output gate update gate what should be remembered or

discarded.
0 9 )_. Applications:
sigmoid tanh pointwise pointwise vector « Time series prediction.

multiplication addition concatenation . Time-series anomaly detection
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Machine Learning Capabilities (1997-2014)

Learning Streams of Text

Download complete works of Shakespeare (5.4
million characters)

Train machine to remember text.

Write new Shakespeare!
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Machine Learning Capabilities (2014-present)

Traditional Approach to Graph Representation Graph Analysis
— target node >A B C D E « Connectivity / reachability analysis
[,«}—» b sourcenode —A| o | o | o |1 ] o +  Cycle detection
Yy T sl ! + Traversal problems
S I I « Shortest path problems
clo 10| 01 « Traceability problems (MBSE)
@m c —»@ +  Matching problems
b S RlOe ) + Topological sort problems
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Graph Embedding Techniques Graph Analytics
* Node Classification
* Node Clustering
bomo"d « Anomaly Prediction
gl 3 w
¢ec0°°“e « Attribute Prediction
encode node « Link Prediction
£ decoge 200 a5, node label | E{ecommendauon
= ! eg. Ele...
Zi community,
(embedding) function

« Each node in the graph is mapped to a low-dimensional space. |
« Goalis to preserve local linkage structure (not global structure). Captures semantics

» Each dimension corresponds to a community in the network. in domain application
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Machine Learning Capabilities (2014-present)

Graph-to-Embedding Space Transformation Graph Reachability
; ey Zu * Red: Target node
ENC(u) : 1-hop neighbors
T —— oZv « Af(.e., adjacency matrix)

<\ /"\ encode nodes / + Blue: 2-hop neighbors
\ r—d— o A2

ENC(v) + Purple: 3-hop neighbors
original network embedding space - N

Goal: Design encoder so that similarity in embedding space is closely approximates similarity in original
network.

Graph Embedding Vector Design: node2vec, DeepWalk, ...
Node2vec: Combine two strategies:

BFS: Breadth First Search provides
a local view of graph neighborhood.

DFS: Depth First Search provides a
global view of the neighborhood. Ngps(u) = { 51, 52,53} Local microscopic view

Encoder is just a simple embedding Nprs(u) = {s4,55,5¢} ~ Global macroscopic view

vector lookup.
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Machine Learning Capabilities (2014-present)

Graph Auto-encoder Link Prediction
Link prediction procedures can be used in new types of system validation / verification.
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Deep Graph Auto-encoder Design

Requirements traceability needs arbitrarily large levels of reachability — first order neighbors,
second-order neighbors, etc. X
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Zi
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2. Compress s; to low-dimensional embedding, z;
(using deep autoencoder)
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