
November 20, 2003 1

SCOUPE

Systems Engineering Tool
designed to guide engineers

through the process of front-end
system development

Faculty: Dr. Mark Austin, Dr. John S. Baras,
Developers: Natasha Kositsyna, Vijay Krishnamurthy, Shah-An Yang

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

2

Why SCOUPE?

Many engineers (students and industry personnel) have
difficulties understanding/learning/practicing the elements of
typical Systems Engineering Processes.
They need a tool that would help them organize ideas and
thoughts into a cohesive and consistent system.
They need to learn basic techniques on visual modeling along
the way (i.e., UML).
They also need tools to facilitate the use of modern formal and
visual tools, in a way that lets the engineers focus on the
engineering task at hand.
They need to understand how to model system behavior and
system structure, and how to map fragments of behavior onto
fragments of system structure (i.e. system components).

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

3

The Big Picture
In ENSE 621/622/623 we promote systems engineering development
procedures that employ semi-formal and formal models of the requirements and design,
connected by mappings and traceability. This is facilitated by selected software SE tools.

Students begin their "case study" projects with the development of an operations concept.
The operations concept should capture the goals and scenarios relevant to stakeholders
needs. They use “use cases” to obtain a first visualization and organization of these
operational concepts and ideas.

Students learn that descriptions of system behavior can be independent of their
implementation in the system structure. However, the selection of a suitable system
structure/architecture will be guided by the required behavior.
They verify that the system structure connectivity is consistent with the flows of
data/information defined in the models of system behavior.
(Mapping system behavior to system structure)

They organize requirements according to their role in contributing to the behavior,
structure, or testing of the system. (Requirements allocation)
They transform requirements into detailed specifications -- that is, requirements that have
an element that can be evaluated quantitatively or logically (true/false).
They allocate fragments of system behavior to components in system structure.

They perform trade-off analysis
They develop a system testing and validation plan

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

4

The Big Picture

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

5

Near-Term Goals for SCOUPE
Development of a tool that would help engineers to:

Specify UML Use Case Diagrams and Scenarios.
Convert Scenarios into UML Activity and UML
Sequence Diagrams.
Identify Object Classes and create Class Diagrams.
Facilitate linkage of chunks of system behavior to
chunks of system structure.
Describe, refine and allocate requirements along the
way.
Link requirements and the resulting specifications to
specific components of system structure and system
behavior.

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

6

Pathway from Use Cases to Scenarios
and High-Level Requirements

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

7

Visualizing Fragments of Behavior as
Paths through the Class Diagram

Based on the project of MSSE student
Adrian Marsh, ENSE 621, Fall 2002

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

8

Visualizing Fragments of Behavior as
Paths through the Class Diagram

Based on the project of MSSE student
Adrian Marsh, ENSE 621, Fall 2002

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

9

Model-Driven Activity Diagram
Generation

Traditional UML tools allow inconsistent diagrams to be drawn
The tool does not tell a student if a diagram is syntactically
consistent with the UML specification
Inconsistent diagrams are ambiguous

Our approach is Model-centric
A student focuses on developing a model
Consistency with the modeling language is enforced through a
grammar
Diagrams are always syntactically consistent with UML

Scoupe automatically generates diagrams from underlying
models

It takes less work to change the model underlying the diagram
than to line up the diagramming elements on screen
Feedback from changing the model is instantaneously provided
through updates to the diagram.

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

10

Activity Diagram Software
Overview

Tree
Structured

Model

User Entered
Text

Scenario
Text

Activity
Diagram

Text Elements

Activity Text

Annotations

Guard Text

Grammar
Sequence → [Action Parallel Decision DoLoop WhileLoop]+

Parallel → Task{2,}
Task → Sequence

Decision → ConditionalBranch+ DefaultBranch?
ConditionalBranch → Predicate Sequence

DefaultBranch → Sequence
DoLoop → Sequence Predicate

WhileLoop → Predicate Sequence

from

defined by

built on

described by

Scoupe

Relationship
Legend

accepts text input

generates

builds up
draws using

automatic layout

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

11

Modeling Language Elements

Parallel

Sequence Decision

Do Loop

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

12

Management of Large Diagrams by
Collapsing

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

13

Advantages, Limitations
Assists students in
learning to produce
correct UML diagrams
Automatic diagram
layout
Blocks of activity
diagrams are
collapsible
Copy and paste
between diagrams is
much easier

Not all UML activity
diagram expressible in
language (only all
behaviors)
No swim-lanes

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

14

Where we are

Students can already create UML
Activity Diagrams from textual
Scenarios and check the diagrams
for correctness.

They can also create diagrams
from scratch, save them into
readable format, and manipulate
the way they are represented on
the screen (collapse/expand).

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

15

Looking ahead
Engineers will be able to identify attributes of each
component, and the fragments of functionality that
each will perform. The identification process is
linked back to the high-level requirements.
They will formulate multi-objective trade-off analysis
problems. Specifications are written as design
constraints. Typical design objectives are cost,
performance, throughput and reliability.
Most of the constraints for trade-off analysis will
come from the requirements-specifications.
Deposition and recovery of the developed annotated
(by requirements) model chunks of system behavior
and system structure to and from an object-
relational database is facilitated.

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

16

Looking ahead

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

17

Benefits of SCOUPE
Scoupe ensures that all of the elements in
the system description are linked together in
a consistent way.
Built-in traceability. By design, each object
can be traced to its behavior , to
corresponding requirements, and to other
necessary elements in the the system.
Students are constrained to complete all of
the steps in the system development
process.

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

18

DEMO of Basic
Capabiliies of SCOUPE

SCOUPE Activity Diagram Editor

• Enables generation of model-driven UML
Activity Diagrams.

• The users can generate diagrams from
scratch using Activity Tree Editor.

• The tool also supports construction of the
diagrams via scenarios.

Following earlier slides 10-12

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

19

DEMO of Basic Capabilities
Activity
Tree
Editor

Activity
Diagram
Viewer

Scenario
Viewer

Activity Diagrams are used
for describing a process, a
use case, or a complicated
method. The can depict data
and information flows. They
can also aid in capturing
requirements.

Activity Tree Editor greatly
simplifies the process of
diagram creation. It
effectively captures the
structure of the Activity
Diagram and enables its
modification.

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

20

DEMO of SCOUPE Functionality

1. Open Textual
Scenario: Typical
Day

2. Create Actions
3. Create Decision

Block
4. Create another

action “Get to the
office”

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

21

5. Create
Parallel
Block
with 3
tasks

DEMO of SCOUPE Functionality

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

22

DEMO of SCOUPE Functionality

6. Create more
Actions

7. Create a
do-while loop
“work until 5pm”

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

23

Final Activity Diagram

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

24

Other SCOUPE Functionality
Collapsing/Expanding Activity Diagrams

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

25

Undo/Redo – lets the user undo or redo the
steps that were made in creating the diagram
Copy/Paste – lets the user copy part of the
diagram and paste it into a new diagram or
into the existing diagram.
Open/Save – any diagram can be saved for
future use.
Export Diagram – any diagram can be
exported into a PNG format

Other SCOUPE Functionality

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

26

DEMO of Using SCOUPE
in a Case Study

Elevator System (based on the project of MSSE students
Mike Buck and Bonnie Lawson, ENSE 621, Fall 2002)

Building has two elevators,
four floors
We will call these elevators
A and B
They are controlled by an
ELC (Elevator logic
controller)
ELC tells A & B, when to
move and in which
direction (up or down) and
on which floor to stop on
the way
User interacts with this
system using different
push buttons (Elevator
Request System or ERS) A elevator B

Floor 1ERSERS

Floor 2ERSERS

Floor 3ERSERS

Floor 4ERSERS

ELC

SCOUPE DEMO Developed by Vimal Mayank

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

27

Initial Pathway of System
Development

Sequence Diagrams

Scenarios

Activity Diagrams

Use Cases

Class Diagrams

Scope of this
presentation

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

28

Initial Class Diagram

Elevator System
requestElevator()
rideElevator()
getOffElevator()

Elevator
elevatorID
passenger_drop_list
rideElevator()
getOffElevator()

Elevator Control System
takeUserInput()
giveVisualFeedback()
giveAudioFeedback()

Elevator Logic Controller
request_ride_list
signalElevatorToMove(ElevatorID)
signalElevatorToStop(ElevatorID)
signalElevatorToCloseDoor(ElevatorID)

1

1 1..*

1

1

t
e
x
t

t
e
x
t

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

29

Elevator System Scenarios
Initial State of the System: Elevator A and B are idling at floor X and Y

respectively. User arrives at ERS

• Presses Up or Down button signifying direction in which he wants to
move.

• ERS sends request to ELC.
• ELC adds request to request_ride_list containing user floor and desired

direction.
• While Elevator A gets no signal to move from ELC Elevator A idles
• A Starts moving in the asked direction.
7. While A gets no signal to stop at approaching floor from ELC it continues

to move. ELC makes stopping decision based on its request_ride_list and
passenger_drop_list_A.

8. If A is asked to stop, A stops at approaching floor.
9. Its door opens.
10. Door remains open until A doesn't get signal to close. It gets signal when

user presses close door, or a floor selection, or a preset time is elapsed
(signifying passenger left before utilizing the request). On the other hand
it can't get that signal if a user inside the elevator presses and holds the
open door button

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

30

Elevator System Scenarios

11. Door starts to close
12. Door opens again if there is an obstruction in the path
13. Door remains open if A doesn't get signal to close
14. Door starts to close
15. Door closes
16. ELC updates request_ride_list and passenger_drop_list_A for that floor.
17. Repeat 6 unless Power is switched off
18. If user makes a floor selection his request is added to

passenger_drop_list_A
19. If user cancels a floor selection his request is deleted from

passenger_drop_list_A
20. Elevator B mimics the scenarios as depicted from 6-19 for elevator A.

Post Condition: Elevator A & B are switched off

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

31

High Level Description of
Scenarios

User Requests
Elevator

Elevator A
movement

Floor
 Selection

for A

Floor
Cancelation

for A

Elevator B
movement

Floor
 Selection

for B

Floor
Cancelation

for B

Start

End

Elevator A
movement

Floor
Selection

for A

Floor
Cancelation

For A

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

32

Initial Use Case for Elevator

User
Ride Elevator

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

33

Terminology
Request_ride_list: This list is maintained by the
ELC, which contains floor from which a user has
requested the elevator, and the desired direction
(Up or down) in which he wants to move
Passenger_drop_list_X: This list is maintained
separately for each elevator X. This contains the
floors at which users will get off from that elevator

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

34

Converting to Activity
Diagram

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

35

Activity Diagram
with elevator A
Block completed

November 20, 2003 Copyright © 2003 Institute for Systems Research
Systems Engineering and Integration Laboratory

36

Full
Activity
Diagram

