

OMG Systems Modeling Language (OMG SysML[™]) Tutorial

11 July 2006

Sanford Friedenthal Alan Moore Rick Steiner

Copyright © 2006 by Object Management Group. Published and used by INCOSE and affiliated societies with permission.

- This material is based on version 1.0 of the SysML specification (ad-06-03-01)
 - Adopted by OMG in May '06
 - Going through finalization process
- OMG SysML Website
 - <u>http://www.omgsysml.org/</u>

At the end of this tutorial, you should understand the:

- Benefits of model driven approaches to systems engineering
- Types of SysML diagrams and their basic constructs
- Cross-cutting principles for relating elements across diagrams
- Relationship between SysML and other Standards
- High-level process for transitioning to SysML

This course is <u>not</u> intended to make you a systems modeler! You must <u>use</u> the language.

Intended Audience:

- Practicing Systems Engineers interested in system modeling
 - Already familiar with system modeling & tools, or
 - Want to learn about systems modeling
- Software Engineers who want to express systems concepts
- Familiarity with UML is not required, but it will help

- Motivation & Background (30)
- Diagram Overview (135)
- SysML Modeling as Part of SE Process (120)
 - Structured Analysis Distiller Example
 - OOSEM Enhanced Security System Example
- SysML in a Standards Framework (20)
- Transitioning to SysML (10)
- Summary (15)

Motivation & Background

SE Practices for Describing Systems

Past

- Specifications
- Interface requirements
- System design
- Analysis & Trade-off
- Test plans

Future

Moving from Document centric to Model centric

11 July 2006

Copyright © 2006 by Object Management Group.

System Modeling

Integrated System Model Must Address Multiple Aspects of a System

Model Based Systems Engineering Benefits

- Improved communications
- Assists in managing complex system development
 - Separation of concerns
 - Hierarchical modeling
 - Facilitates impact analysis of requirements and design changes
 - Supports incremental development & evolutionary acquisition
- Improved design quality
 - Reduced errors and ambiguity
 - More complete representation
- Early and on-going verification & validation to reduce risk
- Other life cycle support (e.g., training)
- Enhanced knowledge capture

System-of-Systems

OMG SYSTEMS MODELING LANGUAGE

Stakeholders Involved in System Acquisition

11 July 2006 Copyright © 2006 by Object Management Group.

What is SysML?

- A graphical modelling language in response to the UML for Systems Engineering RFP developed by the OMG, INCOSE, and AP233
 - a UML Profile that represents a subset of UML 2 with extensions
- Supports the specification, analysis, design, verification, and validation of systems that include hardware, software, data, personnel, procedures, and facilities
- Supports model and data interchange via XMI and the evolving AP233 standard (in-process)

SysML is Critical Enabler for Model Driven SE

What is SysML (cont.)

- *Is* a visual modeling language that provides
 - Semantics = meaning
 - Notation = representation of meaning
- Is not a methodology or a tool
 - SysML is methodology and tool independent

UML/SysML Status

- UML V2.0
 - Updated version of UML that offers significant capability for systems engineering over previous versions
 - Finalized in 2005 (formal/05-07-04)
- UML for Systems Engineering (SE) RFP
 - Established the requirements for a system modeling language
 - Issued by the OMG in March 2003
- SysML
 - Industry Response to the UML for SE RFP
 - Addresses most of the requirements in the RFP
 - Version 1.0 adopted by OMG in May '06 / In finalization
 - Being implemented by multiple tool vendors

SysML Team Members

- Industry & Government
 - American Systems, BAE SYSTEMS, Boeing, Deere & Company, EADS-Astrium, Eurostep, Lockheed Martin, Motorola, NIST, Northrop Grumman, oose.de, Raytheon, THALES
- Vendors
 - Artisan, EmbeddedPlus, Gentleware, IBM, I-Logix, Mentor Graphics, PivotPoint Technology, Sparx Systems, Telelogic, Vitech Corp
- Academia
 - Georgia Institute of Technology
- Liaison Organizations
 - INCOSE, ISO AP233 Working Group

Diagram Overview

SysML Diagram Taxonomy

4 Pillars of SysML – ABS Example

4. Parametrics

3. Requirements 11 July 2006 Cor

Copyright © 2006 by Object Management Group.

- Each SysML diagram represents a model element
- Each SysML Diagram must have a Diagram Frame
- Diagram context is indicated in the header:
 - Diagram kind (act, bdd, ibd, seq, etc.)
 - Model element type (activity, block, interaction, etc.)
 - Model element name
 - Descriptive diagram name or view name
- A separate diagram description block is used to indicate if the diagram is complete, or has elements elided Diagram Description

Structural Diagrams

Package Diagram

- Package diagram is used to organize the model
 - Groups model elements into a name space
 - Often represented in tool browser
- Model can be organized in multiple ways
 - By System hierarchy (e.g., enterprise, system, component)
 - By domain (e.g., requirements, use cases, behavior)
 - Use viewpoints to augment model organization
- Import relationship reduces need for fully qualified name (package1::class1)

Package Diagram Organizing the Model

11 July 2006

Copyright © 2006 by Object Management Group.

Package Diagram - Views

- Model is organized in one hierarchy
- Viewpoints can provide insight into the model using another principle
 - E.g., analysis view that spans multiple levels of hierarchy
 - Can specify diagram usages, constraints, and filtering rules
 - Consistent with IEEE
 1471 definitions

- Provides a unifying concept to describe the structure of an element or system
 - Hardware
 - Software
 - Data
 - Procedure
 - Facility
 - Person

«block» BrakeModulator
<i>allocatedFrom</i> activity»Modulate BrakingForce
values

DutyCycle: Percentage

- Multiple compartments can describe the block characteristics
 - Properties (parts, references, values)
 - Operations
 - Constraints
 - Allocations to the block (e.g. activities)
 - Requirements the block satisfies

Block Property Types

- Property is a structural feature of a block
 - Part property aka. part (typed by a block)
 - Usage of a block in the context of the enclosing block
 - Example right-front:wheel
 - Reference property (typed by a block)
 - A part that is not owned by the enclosing block (not composition)
 - Example logical interface between 2 parts
 - Value property (typed by value type)
 - Defines a value with units, dimensions, and probability distribution
 - Example
 - Non-distributed value: tirePressure:psi=30
 - Distributed value: «uniform» {min=28,max=32} tirePressure:psi

Using Blocks

- Based on UML Class from UML Composite Structure
 - Eliminates association classes, etc.
 - Differentiates value properties from part properties, add nested connector ends, etc.
- Block definition diagram describes the relationship among blocks (e.g., composition, association, classification)
- Internal block diagram describes the internal structure of a block in terms of its properties and connectors
- Behavior can be allocated to blocks

Blocks Used to Specify Hierarchies and Interconnection

Block Definition vs. Usage

Block Definition Diagram

Internal Block Diagram

Definition

- Block is a definition/type
- Captures properties, etc.
- Reused in multiple contexts

Usage

- Part is the usage in a particular context
- Typed by a block
- Also known as a role

Internal Block Diagram (ibd) Blocks, Parts, Ports, Connectors & Flows

Internal Block Diagram Specifies Interconnection of Parts

SysML Port

- Specifies interaction points on blocks and parts
 - Supports integration of behavior and structure
- Port types
 - Standard (UML) Port
 - Specifies a set of operations and/or signals
 - Typed by a UML interface
 - Flow Port
 - Specifies what can flow in or out of block/part
 - Typed by a flow specification

2 Port Types Support Different Interface Concepts

Port Notation

- Delegation can be used to preserve encapsulation of block
- Interactions at outer ports of Block1 are delegated to ports of child parts
- Ports must match (same kind, types, direction etc.)
- (Deep-nested) Connectors can break encapsulation if required (e.g. in physical system modeling)

Parametrics

- Used to express constraints (equations) between value properties
 - Provides support for engineering analysis (e.g., performance, reliability)
- Constraint block captures equations
 - Expression language can be formal (e.g., MathML, OCL) or informal
 - Computational engine is defined by applicable analysis tool and not by SysML
- Parametric diagram represents the usage of the constraints in an analysis context
 - Binding of constraint usage to value properties of blocks (e.g., vehicle mass bound to $F = m \times a$)

Parametrics Enable Integration of Engineering Analysis with Design Models

Defining Vehicle Dynamics

Defining Reusable Equations for Parametrics

11 July 2006

Vehicle Dynamics Analysis

Using the Equations in a Parametric Diagram to Constrain Value Properties

Behavioral Diagrams

Activities

- Activity used to specify the flow of inputs/outputs and control, including sequence and conditions for coordinating activities
- Secondary constructs show responsibilities for the activities using swim lanes
- SysML extensions to Activities
 - Support for continuous flow modeling
 - Alignment of activities with Enhanced Functional Flow Block Diagram (EFFBD)

Activity Diagram Notation

Join and Merge symbols not included

•Activity Parameter Nodes on frame boundary correspond to activity parameters 11 July 2006 Copyright © 2006 by Object Management Group.

Activity Diagrams Pin vs. Object Node Notation

- Pins are kinds of Object Nodes
 - Used to specify inputs and outputs of actions
 - Typed by a block or value type
 - Object flows connect object nodes
- Object flows between pins have two diagrammatic forms
 - Pins shown with object flow between them
 - Pins elided and object node shown with flow arrows in and out

Explicit Allocation of Behavior to Structure Using Swimlanes

11 July 2006

SysML EFFBD Profile

EFFBD - Enhanced Functional Flow Block Diagram

Aligning SysML with Classical Systems Engineering Techniques

Distill Water Activity Diagram (Continuous Flow Modeling)

Activity Decomposition

Definition

Use

Interactions

- Sequence diagrams provide representations of message based behavior
 - represent flow of control
 - describe interactions
- Sequence diagrams provide mechanisms for representing complex scenarios
 - reference sequences
 - control logic
 - lifeline decomposition
- SysML does not include timing, interaction overview, and communications diagram

Black Box Interaction (Drive)

UML 2 Sequence Diagram Scales by Supporting Control Logic and Reference Sequences⁴⁶

Simple Black Box Interaction

11 July 2006

White Box Sequence (StartVehicle)

Decomposition of Black Box Into White Box Interaction

11 July 2006

Trial Result of Vehicle Dynamics

Lifeline are value properties

Timing Diagram Not Part of SysML

Typical Example of a Timing Diagram

11 July 2006

State Machines

- Typically used to represent the life cycle of a block
- Support event-based behavior (generally asynchronous)
 - Transition with trigger, guard, action
 - State with entry, exit, and do-activity
 - Can include nested sequential or concurrent states
 - Can send/receive signals to communicate between blocks during state transitions, etc.

Operational States (Drive)

Transition notation: trigger[guard]/action

SYSTEMS

MODELING

- Provide means for describing basic functionality in terms of usages/goals of the system by actors
- Common functionality can be factored out via include and extend relationships
- Generally elaborated via other behavioral representations to describe detailed scenarios
- No change to UML

Operational Use Cases

• Allocations

Allocations

- Represent general relationships that map one model element to another
- Different types of allocation are:
 - Behavioral (i.e., function to component)
 - Structural (i.e., logical to physical)
 - Software to Hardware

-

- Explicit allocation of activities to structure via swim lanes (i.e., activity partitions)
- Both graphical and tabular representations are specified

Different Allocation Representations (Tabular Representation Not Shown)

Compartment Notation

Callout Notation

SysML Allocation of SW to HW

- In UML the deployment diagram is used to deploy artifacts to nodes
- In SysML allocation on ibd and bdd is used to deploy software/data to hardware

Requirements

- The «requirement» stereotype represents a text based requirement
 - Includes id and text properties
 - Can add user defined properties such as verification method
 - Can add user defined requirements categories (e.g., functional, interface, performance)
- Requirements hierarchy describes requirements contained in a specification
- Requirements relationships include DeriveReqt, Satisfy, Verify, Refine, Trace, Copy

Requirements Breakdown

Requirement Relationships Model the Content of a Specification

11 July 2006

Arrow Direction Opposite Typical Requirements Flow-Down

11 July 2006

Problem and Rationale

Problem and Rationale can be attached to any Model Element to Capture Issues and Decisions

11 July 2006

- Mechanisms for further customizing SysML
- Profiles represent extensions to the language
 - Stereotypes extend meta-classes with properties and constraints
 - Stereotype properties capture metadata about the model element
 - Profile is applied to user model
 - Profile can also restrict the subset of the meta-model used when the profile is applied
- Model Libraries represent reusable libraries of model elements

Stereotypes

«configurationItem» Engine

author="John Doe" version="1.2" lastChanged=Dec12, 2005

Defining the Stereotype

Applying the Stereotype

11 July 2006

Applying a Profile and Importing a Model Library

Cross Connecting Model Elements

SysML Modeling as Part of the SE Process

Distiller Sample Problem

Distiller Problem Statement

- The following problem was posed to the SysMLteam in Dec '05 by D. Oliver:
- Describe a system for purifying dirty water.
 - Heat dirty water and condense steam are performed by a Counter Flow Heat Exchanger
 - Boil dirty water is performed by a Boiler
 - Drain residue is performed by a Drain
 - The water has properties: vol = 1 liter, density 1 gm/cm3, temp 20 deg C, specific heat 1cal/gm deg C, heat of vaporization 540 cal/gm.
- A crude behavior diagram is shown.

What are the real requirements? How do we design the system?

11 July 2006

Distiller Types

Batch Distiller

Continuous Distiller

- Organize the model, identify libraries needed
- List requirements and assumptions
- Model behavior
 - In similar form to problem statement
 - Elaborate as necessary
- Model structure
 - Capture implied inputs and outputs
 - segregate I/O from behavioral flows
 - Allocate behavior onto structure, flow onto I/O
- Capture and evaluate parametric constraints
 - Heat balance equation
- Modify design as required to meet constraints

Distiller Problem – Package Diagram: Model Structure and Libraries

Distiller Example Requirements Diagram

	«requirement» OriginalStatement	
ld = S0.0 text = Describe a system for pu - Heat dirty water and condense - Boil dirty water is performed b The water has properties: vol =	rifying dirty water. e steam are performed by a Counter Flow Heat Ex y a Boiler. Drain residue is performed by a Drain. 1 liter, density 1 gm/cm3, temp 20 deg C, specific D	changer heat 1cal/gm deg C, heat of vaporization 540 cal/gm. 49
«requirement» PurifyWater	«requirement» HeatExchanger	«requirement» WaterProperties
deriveReqt» («rationale» The requirement	Id = S2.0 text = Heat dirty water and condense steam are performed by a Counter Flow Heat Exchanger	Id = S5.0 text = water has properties: density 1 gm/cm3, temp 20 deg C, specific heat 1cal/gm deg C, heat of vaporization 540 cal/gm.
	Id = S3.0	⊕ ≪requirement» WaterInitialTemp
	by a Boiler. «requirement» Drain	Id = S5.1 text = water has an initial temp 20 deg C
for a boiling function and a boiler implies that the water must be purified by distillation	Id = S4.0 text = Drain residue is performed by a Drain.	
«requirement» DistillWater]	

Distiller Example: Requirements Tables

	name	text						
<u>.</u> 50.0	OriginalStatement	Describe a system for purifying dirty water						
\$1.0	PurifyWater	The system shall purify dirty water.						
52.0	HeatExchanger	Heat dirty water and condense steam are performed by a						
\$3.0	Boiler	Boil dirty water is performed by a Boiler.						
54.0	Drain	Drain residue is performed by a Drain.						
S5.0	WaterProperties	water has properties: density 1 gm/cm3, temp 20 deg C,						
S5.1	WaterInitialTemp	water has an initial temp 20 deg C						

table [requirement] PurifyWater [Requirements Tree]

id	name	relation	id	name	Rationale
					The requirement for a boiling function and a boiler
S1.0	PurifyWater	deriveReqt	D1.0	DistillWater	implies that the water must be purified by distillation

Distiller Example – Activity Diagram: Initial Diagram for DistillWater

• This activity diagram applies the SysML EFFBD profile, and formalizes the diagram in the problem statement.

11 July 2006

Copyright © 2006 by Object Management Group.

Distiller Example – Activity Diagram: Control-Driven: Serial Behavior

Copyright © 2006 by Object Management Group.

Distiller Example – Block Definition Diagram: DistillerBehavior

Distiller Example – State Machine Diagram: States of H2O

Copyright © 2006 by Object Management Group.

Distiller Example – Activity Diagram: I/O Driven: Continuous Parallel Behavior

Distiller Example – Activity Diagram: No Control Flow – Simultaneous Behavior

11 July 2006 Copyright © 2006 by Object Management Group.

Distiller Example – Activity Diagram (with Swimlanes): DistillWater

Copyright © 2006 by Object Management Group.

80

Distiller Example – Block Definition Diagram: DistillerStructure

Distiller Example – Block Definition Diagram: Heat Exchanger Flow Ports

Distiller Example – Internal Block Diagram: Distiller Initial Design

11 July 2006

Distiller Example –Internal Block Diagram: Distiller with Allocation

Copyright © 2006 by Object Management Group.

84

Distiller Example – Heat Balance Results

			tisfies «	require	ment»				
specific heat cal/gm-°C	1	Wa	Satisfies «requirement» WaterSpecificHeat Satisfies «requirement» WaterHeatOfVaporization						
latent heat cal/cm	540	Sa Wa							
Satisfies «requirement» WaterInitialTemp mass flow rate gm/sec	S <mark>.51</mark> water_in	01 01 02 01 01 01 01 01	bx_water_in	bx_steam_out	S _ water_out				
	° 20		100	100	100	1			
dQ/dt cooling water cal/sec	540		``						
dQ/dt steam-condensate cal/sec	540	No	Note: Cooling water						
condenser efficency	1	nee	needs to have 6x flow						
heat deficit	0	Ne	Need bypass between						
	hx	hx_water_out and							
dQ/dt condensate-steam cal/sec	540	bx_	water_	in!					
boiler efficiency	1								
dQ/dt in boiler cal/sec	540								

Copyright © 2006 by Object Management Group.

Distiller Example – Activity Diagram: Updated DistillWater

Distiller Example – Internal Block Diagram: Updated Distiller

Distiller Example – Use Case and Sequence Diagrams

seq OperateDistiller [Operational Sequence] «block» «actor» uc DistillerUseCases [Operate Distiller] :User :Distiller TurnOn Operate Distiller Distiller PowerLampOn User OperatingLampOn loop alt LevelHighLampOn DrainingLampOn LevelLowLampOn TurnOff PowerLampOff agement Group.

Distiller Example – Internal Block Diagram: Distiller Controller

ibd: [block] Distiller [DistillerBlockDiagram – With Controller] m2-2:H2O \Rightarrow \Rightarrow m1:H2O m2-1:H2O m2-1:H2O s2:Residue s1:Residue feed:Valve bx1:Boiler hx1:HeatExchanger drain:Valve ∩ IValve blrSig lValve $^{\bigcirc}$ m3:H2O \geq b:1Power m4:H2O p1:Power (Valve) blrSig \geq lValve ui1:ControlPanel cx1:Controller IPower (IPower ILamp ILamp

Copyright © 2006 by Object Management Group.

11 July 2006

OOSEM – ESS Example

System Development Process

Integrated Product Development (IPD) is essential to improve communications A Recursive V process that can be applied to multiple levels of the system hierarchy

- The Enhanced Security System is the example for the OOSEM material
 - Problem fragments used to demonstrate principles
 - Utilizes Artisan RTS[™] Tool for the SysML artifacts

ESS Requirements Flowdown

Operational View Depiction

ESS Enterprise As-Is Model

ESS Operational Enterprise To-Be Model

System Use Cases - Operate

System Scenario: Activity Diagram Monitor Site (Break-In)

ESS Elaborated Context Diagram

ESS Logical Design – Example Subsystem

ESS Logical Design (Partial)

Allocating Logical Components to HW, SW, Data, and Procedures components

						Lo	ogica	I Com	ponei	nts					
	Туре		Entry Sensor	Exit Sensor	Perimeter Sensor	Entry/Exit Monitor	Event Monitor	Site Comms I/F	Event Log	Customer I/F	Customer Output Mgr	System Status	Fault Mgr	Alarm Generator	Alarm I/F
	«software»	Device Mgr													X
		SF Comm I/F						X							
		User I/F									X				
		Event Mgr				X	X								
		Site Status Mgr											X		
nts		Site RDBMS						_	X			X			
ne		CMS RDBMS						_	X						
Physical Compo	«data»	Video File							X						
		CMS Database							X						
		Site Database						_	X			X			
	«hardware»	Optical Sensor	X	X											
		DSL Modem						X							
		User Console								X			_		
		Video Camera			X										
		Alarm												X	

ESS Deployment View

ESS Parametric Diagram To Support Trade-off Analysis

Entry/Exit Test Case

11 July 2006 Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006 109

OOSEM Browser View Artisan Studio[™] Example

Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006

SysML in a Standards Framework

Systems Engineering Standards Framework (Partial List)

11 July 2006

Copyright © 2006 by Object Management Group.

ISO/IEC 15288 System Life Cycle Processes

11 July 2006

Copyright © 2006 by Object Management Group.

Standards-based Tool Integration with SysML

- Artisan
- EmbeddedPlus
 - 3rd party IBM vendor
- Sparx Systems
- Telelogic (includes I-Logix)
- Vitech

UML Profile for DoDAF/MODAF (UPDM) Standardization

- Current initiative underway to develop standard profile for representing DODAF and MODAF products
 - Requirements for profile issued Sept 05
 - Final submissions expected Dec '06
- Multiple vendors and users participating
- Should leverage SysML

Transitioning to SysML

Using Process Improvement To Transition to SysML

Integrated Tool Environment

Summary and Wrap up

- SysML sponsored by INCOSE/OMG with broad industry and vendor participation
- SysML provides a general purpose modeling language to support specification, analysis, design and verification of complex systems
 - Subset of UML 2 with extensions
 - 4 Pillars of SysML include modeling of requirements, behavior, structure, and parametrics
- OMG SysML Adopted in May 2006
- Multiple vendor implementations announced
- Standards based modeling approach for SE expected to improve communications, tool interoperability, and design quality

References

- OMG SysML website
 - <u>http://www.omgsysml.org</u>
- UML for Systems Engineering RFP
 - OMG doc# ad/03-03-41
- UML 2 Superstructure
 - OMG doc# formal/05-07-04
- UML 2 Infrastructure
 - OMG doc# ptc/04-10-14