
 Citation: RS Peak, RM Burkhart, SA Friedenthal, MW Wilson, M Bajaj, I Kim (2007) Simulation-Based Design
Using SysML—Part 1: A Parametrics Primer. INCOSE Intl. Symposium, San Diego.
Web Release Version: May 4, 2007. Includes minor corrections beyond the original publication.

Simulation-Based Design Using SysML
Part 1: A Parametrics Primer

Russell S. Peak1,†, Roger M. Burkhart2, Sanford A. Friedenthal3, Miyako W. Wilson1, Manas Bajaj1, Injoong Kim1

1 Georgia Institute of Technology
http://www.pslm.gatech.edu/

http://eislab.gatech.edu/

2 Deere & Company
http://www.johndeere.com/

3 Lockheed Martin Corp.
http://www.lockheedmartin.com/

Copyright © 2007 by Georgia Tech, Deere & Co., and Lockheed Martin Corp. Published and used by INCOSE with permission.

Abstract. OMG SysML™ is a modeling language for specifying, analyzing, designing, and verifying complex
systems. It is a general-purpose graphical modeling language with computer-sensible semantics. This Part 1 paper
and its Part 2 companion show how SysML supports simulation-based design (SBD) via tutorial-like examples. Our
target audience is end users wanting to learn about SysML parametrics in general and its applications to engineering
design and analysis in particular. We include background on the development of SysML parametrics that may also
be useful for other stakeholders (e.g, vendors and researchers).

In Part 1 we walk through models of simple objects that progressively introduce SysML parametrics concepts.
To enhance understanding by comparison and contrast, we present corresponding models based on composable
objects (COBs). The COB knowledge representation has provided a conceptual foundation for SysML parametrics,
including executability and validation. We end with sample analysis building blocks (ABBs) from mechanics of
materials showing how SysML captures engineering knowledge in a reusable form. Part 2 employs these ABBs in a
high diversity mechanical example that integrates computer-aided design and engineering analysis (CAD/CAE).

The object and constraint graph concepts embodied in SysML parametrics and COBs provide modular analysis
capabilities based on multi-directional constraints. These concepts and capabilities provide a semantically rich way
to organize and reuse the complex relations and properties that characterize SBD models. Representing relations as
non-causal constraints, which generally accept any valid combination of inputs and outputs, enhances modeling
flexibility and expressiveness. We envision SysML becoming a unifying representation of domain-specific
engineering analysis models that include fine-grain associativity with other domain- and system-level models,
ultimately providing fundamental capabilities for next-generation systems lifecycle management.

Keywords. SysML parametrics, composable object (COB), constraint graph, non-causal, multi-directional,
simulation-based design, design-analysis integration, CAD-CAE interoperability.

1 Introduction to SysML and COBs
The purpose of these papers is to introduce SysML parametrics technology in general and its application to
engineering analysis and design in particular. Composable object (COB) technology is included as one possible
means to execute SysML parametric models. This section overviews these technologies and assumes the reader is
familiar with basic object-oriented concepts and engineering analysis.

1.1 OMG SysML™ and Parametrics
The official Object Management Group (OMG) website describes SysML as follows [OMG, 2007a]:

The OMG Systems Modeling Language (OMG SysML™) is a general-purpose graphical modeling language for
specifying, analyzing, designing, and verifying complex systems that may include hardware, software, information,
personnel, procedures, and facilities. In particular, the language provides graphical representations with a semantic
foundation for modeling system requirements, behavior, structure, and integration with a broad range of engineering
analysis. SysML represents a subset of UML2 with extensions needed to satisfy the requirements of the UML™ for
Systems Engineering RFP. SysML uses the OMG XML Metadata Interchange (XMI®) to exchange modeling data
between tools, and is also intended to be compatible with the evolving ISO 10303-233 systems engineering data
interchange standard.

† Corresponding author: Russell.Peak@gatech.edu See the [GIT, 2007c] website for potential updates to this material.

 1

The UML for Systems Engineering RFP was developed jointly by the OMG and the International Council on
Systems Engineering (INCOSE) and issued by the OMG in March 2003. The RFP specified the requirements for
extending UML to support the needs of the systems engineering community. The SysML Specification was developed
in response to these requirements by a diverse group of tool vendors, end users, academia, and government
representatives. The OMG announced the adoption of the OMG SysML™ on July 6, 2006.

Unless otherwise noted, the diagrams and description in these papers (Parts 1 and 2) conform to the SysML Final
Adopted Specification plus changes proposed by the SysML Finalization Task Force released February 23, 2007
[OMG, 2007b]. Additional information on OMG SysML publications, tutorials, vendor tools, and links to other
items mentioned in this subsection can be found via http://www.omgsysml.org/, including [Burkhart, 2006] and
[Friedenthal et al. 2006].

Motivation for SysML parametrics—Part 1. Parametrics are not part of UML and were introduced as a new
modeling capability as part of SysML (Figure 11). A primary focus for parametrics is to support engineering
analysis of critical system parameters including evaluation of performance, reliability, and physical characteristics.
Engineering analysis is a critical aspect of systems engineering. However, there has been a fundamental gap in
previous modeling languages including UML, IDEF, and behavior diagrams. As a result, non-standardized
engineering analysis models are often disjoint from the system architectural models that specify the behavioral and
structural aspects of a system. The lack of integration and synchronization between the system architectural models
and the engineering analysis models is aggravated as the complexity, diversity, and number of engineering analysis
models increases. Parametrics provides a mechanism to address this gap and integrate engineering analysis models
with system requirements and design models for behavior and structure. In addition, parametrics is a constraints
representation that can be used more generally to capture other types of knowledge beyond support for engineering
analysis. Part 2 provides further motivation related to parametrics and engineering analysis in particular.

Key SysML parametrics terminology includes the following:
� A constraint is analogous to an equation (e.g., F=m*a, which is useful in many engineering problems). A

constraint block is a definition of this equation in a way that it can be reused. A constraint property is a
particular usage of a generic constraint block (e.g., to support engineering analysis of a specific design).

� A parameter is a variable of an equation (a constraint) such as F, m, and a in the above example.
� A value property is any quantifiable characteristic of the environment, system, or its components that is

subject to analysis such as the mass of a system or its components. The basic properties of a system
architectural model and its components are typically represented in SysML models as value properties.

Value properties are bound to the parameters of a constraint. This binding is the mechanism to keep the generic
equations, such as F=m*a, linked to the value properties that are used to specify the system and its components.
The complete terminology includes additional terms and concepts, but the above are the essential elements to keep
in mind as you begin to work with SysML parametrics.

1.2 The Composable Object (COB) Knowledge Representation
SysML parametrics is based in part on a theory called composable objects (COBs). Composable objects have been
developed at the Georgia Institute of Technology (GIT) as a means for representing and integrating design models
with diverse analysis1 models. Design and analysis information is typically represented by a collection of
interrelated models of varying discipline and fidelity. Thus a method for capturing diverse multi-fidelity models and
their fine-grained relations was needed. It was also desirable for this method to be independent of the specific
CAD/CAE tools used to create, manage, and compute these models.

The COB representation is based on object and constraint graph concepts to gain their modularity and multi-
directional capabilities. Object techniques provide a semantically rich way to organize and reuse the complex
relations and properties that naturally underlie engineering models. Representing relations as constraints makes
COBs flexible because constraints can generally accept any combination of I/O information flows. This multi-
directionality enables design sizing and design verification using the same COB-based analysis model. Engineers
perform such activities throughout the design process, with the former being characteristic of early design stages and
vice versa.

The COB representation includes several modeling languages (see Appendix A). It has lexical formulations that
are computer interpretable, as well as graphical forms that aid human comprehension (Figure 14). Two lexical
languages, COS and COI, are the master forms which are both computer-interpretable and human-friendly. Other

1 In this overview the terms “analysis” and “simulation” synonymously denote modeling physical behavior such as stress and

temperature. Envisioned next-generation extensions include generalizations for broader classes of modeling and simulation.

 2

forms depict subsets of COS and COI models. For example, the graphical constraint schematic notation (Figure 15)
emphasizes object structure and relations among object variables and has strong electrical schematic analogies. The
structure level languages define concepts as templates at the schema level, whereas the instance level defines
specific objects that populate one or more of these templates.

Over the past few years we have worked together with other SysML developers to embody COB concepts
within SysML (especially regarding its block and parametric constructs) [GIT, 2007c; Peak, 2002; Peak et al. 2005a,
2005b]. This approach has benefited both SysML and COBs—the former by providing conceptual formalisms and a
broad variety of examples; and the latter by leveraging a richer set of SysML/UML2-based constructs that integrate
with other system specification and design features, and by providing graphical modeling capabilities via multiple
commercial tool vendors.

2 Introductory Concepts and Tutorial Examples
This section introduces SysML and COB concepts using tutorial-like examples. COBs are leveraged here as a
preexisting body of work that illustrates typical parametrics concepts. The intent is to help the reader better
understand such concepts as used in SysML parametrics. Over time we intend to convert these examples to fully
use SysML as their content representation (e.g., for all graphical modeling views), while continuing to employ COB
constraint management algorithms for parametrics execution. See [GIT, 2007c], [Peak et al. 1999, 2002, 2005a,
2005b] and [Wilson 2000, 2001] for further information and examples.

2.1 Triangles and Prisms
Representation Using Classical COB Formulations. Figure 1 provides the main classical COB formulations for a
primitive object (a right triangle) and its usage in a compound object (a prism). The upper-left portion of Figure 1
shows two forms traditionally used to convey knowledge about such objects: equations that hold in the object and a
corresponding graphical view depicting variables in these equations. In COB terms, we call these relations-S and a
shape schematic-S, respectively. The -S denotes that the representational construct describes a structural facet of the
object—a class or schema-level facet in object-oriented terms—which can be thought of as a kind of template.

Representation of the first object as a COB right_triangle template is shown in Figure 1.1(a)-(e), where the
constraint schematic-S form, (c), depicts its equation-based relations and variables as a kind of graph (Figure 15).
Figure 1.1(e) is the lexical COB structure (COS) form, which is executable. It is also the master template from
which structural forms (b)-(d) can be derived. Subsystems, (d), are encapsulated views that represent this object
when it is used as a building block in other COBs.

Structural forms of a COB trianglular_prism template are similarly shown in Figure 1.2. Besides basic variables
like volume and length, this template has one compound variable, cross-section, which is a usage of the right_triangle
template defined above.

The equation relations in all the COB structural forms are non-causal—i.e., they are undirected and support any
valid input/output combination at the instance level. For example, relation r1 in right_triangle, can have variables base
and height as inputs to produce area as the output, or area and height can be inputs to produce base as the output.

A COB instance can be loosely thought of as a copy of a COB template that has values filled in and
input/output directions specified. Figure 1.2(f) is the constraint schematic-I form of a trianglular_prism instance after
it has been solved. Figure 1.2(g) shows the corresponding lexical COB instance (COI) form for state 1.1, as well as
the form for state 1.0 (before solving). Variables cross-section.base, cross-section.height, and length are provided as
inputs in these states, and the primary target to be solved for is volume. As seen in state 1.1, note that cross-
section.area was produced as an intermediate (ancillary) output along the way.

Representation Using SysML. The same objects can be represented using similar concepts in SysML, as seen in
the Figure 2 SysML diagrams. In brief, COBs are represented using SysML blocks, primitive variables are called
value properties, and SysML parametric diagrams essentially replace COB constraint schematics. SysML
represents relations themselves as a special type of SysML block known as a constraint block, which elevates their
semantics and makes them explicitly reusable (vs. their simple string form in COS). Usages of constraint blocks are
known as constraint properties and are shown as rounded corner rectangles (e.g., r1 and r2 in RightTriangle).

Figure 2(a) is a block definition diagram (bdd) that shows a block called RightTriangle that includes value
properties named area, base, diagonal, and length. Block definition diagrams present structural relationships among
blocks based on concepts including part-of and is-a relationships. This type of diagram is based on the UML2 class
diagram and essentially replaces the classical COB object relationship diagram-S (Figure 14). The value properties
represent quantifiable characteristics that can include units and dimension such as units of meters and dimension of

 3

length. This is accomplished in SysML by typing the value property by a value type. In Figure 2(a), the value types
are shown as LengthMeasure, AreaMeasure, and VolumeMeasure. These represent abstract value types that users can
employ to make their model libraries usable with a wide variety of unit systems. Appendix A (Figure 12) defines
these value types and sample concrete specializations that are used throughout Parts 1 and 2.

Triangula r
Prism

Vh

b

l

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S
(for reuse by other COBs)

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV �

cross-section
h

b

V l

AlVr �:1

e. Lexical COB Structure (COS)
COB triangular_prism SUBTYPE_OF geometric_shape;

length, l : REAL;
cross-section : triangle;
volume, V : REAL;

RELATIONS
r1 : "<volume> == <cross-section.area> * <length>";

END_COB;

f. Constraint Schematic-I

g. Lexical COB Instance (COI)

state 1.0 (unsolved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
length : 5.0;
volume : ?;

END_INSTANCE;

state 1.1 (solved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
cross-section.area : 3.0;
length : 5.0;
volume : 15.0;

END_INSTANCE;

example 1, state 1.1
Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV �

cross-section

3 in2
2 in

3 in

15 in35 in

Triangula r
Prism

Vh

b

l

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S
(for reuse by other COBs)

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV �

cross-section
h

b

V l

AlVr �:1

e. Lexical COB Structure (COS)
COB triangular_prism SUBTYPE_OF geometric_shape;

length, l : REAL;
cross-section : triangle;
volume, V : REAL;

RELATIONS
r1 : "<volume> == <cross-section.area> * <length>";

END_COB;

f. Constraint Schematic-I

g. Lexical COB Instance (COI)

state 1.0 (unsolved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
length : 5.0;
volume : ?;

END_INSTANCE;

state 1.1 (solved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
cross-section.area : 3.0;
length : 5.0;
volume : 15.0;

END_INSTANCE;

example 1, state 1.1
Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV �

cross-section

3 in2
2 in

3 in

15 in35 in

a. Shape Schematic-S

h

b
A

d

c. Constraint Schematic-S

base, b
r1

r2

bhA 2
1�

height, h

222 hbd ��

area, A

diagonal, d

222
2

1

:
2

1:

hbdr

bhAr

��

�
b. Relations-S

Triangle

dh

Ab

Triangle

dh

Ab

d. Subsystem-S
(for reuse by other COBs)

e. Lexical COB Structure (COS)
COB triangle SUBTYPE_OF geometric_shape;

base, b : REAL;
height, h : REAL;
diagonal, d : REAL;
area, A : REAL;

RELATIONS
r1 : "<area> == 0.5 * <base> * <height>";
r2 : "<diagonal>**2 == <base>**2 + <height>**2";

END_COB;

a. Shape Schematic-S

h

b
A

d

a. Shape Schematic-S

h

b
A

d

c. Constraint Schematic-S

base, b
r1

r2

bhA 2
1�

height, h

222 hbd ��

area, A

diagonal, d

c. Constraint Schematic-S

base, b
r1

r2

bhA 2
1�

height, h

222 hbd ��

area, A

diagonal, d

222
2

1

:
2

1:

hbdr

bhAr

��

�
b. Relations-S

222
2

1

:
2

1:

hbdr

bhAr

��

�
b. Relations-S

Triangle

dh

Ab

Triangle

dh

Ab

d. Subsystem-S
(for reuse by other COBs)

e. Lexical COB Structure (COS)
COB triangle SUBTYPE_OF geometric_shape;

base, b : REAL;
height, h : REAL;
diagonal, d : REAL;
area, A : REAL;

RELATIONS
r1 : "<area> == 0.5 * <base> * <height>";
r2 : "<diagonal>**2 == <base>**2 + <height>**2";

END_COB;

1. right_triangle 2. triangular_prism

Figure 1: Triangle/prism tutorial—classical COB formulations.

Figure 2(b) is a parametric diagram (par) that shows how these value properties are constrained by area
equation and Pythagorean equation usages (i.e. constraint properties). This is accomplished by binding the
parameters of the equations to the value properties of the RightTriangle block, which are depicted by the small
rectangles in the figure. This binding is achieved using binding connectors which are graphically represented as
solid lines2 that “wire together” value properties and parameters. Appendix A contains a sample SysML tool
screenshot (Figure 13) where such models have been implemented based on earlier drafts of the SysML spec.

Figure 2(a) also defines a TriangularPrism block which is composed of a RightTriangle and has two value
properties. The particular usage of the RightTriangle for TriangularPrism is referred to by its part name called

2 The parametric diagrams in these papers use an electrical schematic-like branching convention for connecting a value property

to more than one constraint parameter (e.g., height connecting to both r1.h and r2.h in Figure 2(b)). This branching approach
reduces the graphical space needed to connect to a value property and typically results in a cleaner looking diagram. The
convention for unambiguously interpreting such branching is that every connection between the value property and the
indicated parameters is implemented as a distinct binding connector. Thus two binding connectors attach to height in

(b). This convention applies similarly for the case where a parameter connects directly to two or more other parameters.
Figure

2

 4

crossSection. Figure 2(c) is a parametric diagram that further defines the TriangularPrism block by showing how the
length, volume, and crossSection.area value properties are constrained by the r1 volume equation.

Figure 2(d) shows a particular instance3 of the constrained properties from Figure 2(c) that includes specific
values for the value properties. It represents the same COB instance shown in Figure 1 and uses a similar color
coding scheme4 to depict the current inputs (in blue) and outputs (in red). This example utilizes value types based
on millimeters. SysML syntax places what looks like the units to the left of the value because these “units” are
actually concrete value types. For example, mm^2 is a specialization of AreaMeasure as defined in Figure 12.

{V = A * l}

r1: VolumeEqn

l: V:
A:

length:

par [block] TriangularPrism [Definition view]

volume:

bdd [package] basicShapes [Triangle/prism tutorial]

TriangularPrism

values
length: LengthMeasure
volume: VolumeMeasure

RightTriangle

values
area: AreaMeasure
base: LengthMeasure
diagonal: LengthMeasure
height: LengthMeasure

crossSection

{A = 1/2 * b * h}

r1: AreaEqn

b: A:
h:

base:

height:

{d^2 = b^2 + h^2}

r2: PythagoreanEqn

b: d:
h:

par [block] RightTriangle [Definition view]

area:

diagonal:

{V = A * l}

r1: VolumeEqn

l: V:
A:

length:
mm = 5.0

par [block] TriangularPrism145 [Instance view: state 1.1 - solved]

volume:

crossSection: RightTriangle

base:

diagonal:

height:
area:

mm^3 = 15.0

(a) Triangle/prism tutorial block definition diagram. (c) TriangularPrism parametric diagram.

(b) RightTriangle parametric diagram. (d) TriangularPrism sample instance.

crossSection: RightTriangle95

base:
mm = 2.0

diagonal:
height:
mm = 3.0 area:

mm^2 = 3.0

Figure 2: Triangle/prism tutorial—SysML diagrams.

There is an important distinction between a constraint block that defines a constraint, and a constraint property,
which is a usage of a constraint block. A constraint block definition can represent a generic equation, such as the
volume, area, and Pythagorean equations. Constraint blocks may be reused to constrain value properties of many

3 The term instance is loosely used its generic form. Briefly, we employ an “instantiation by specialization” approach such that

RightTriangle95 is a specialization that has specific values. Specifics of this approach are beyond the scope of these papers.
4 This causality color scheme is a GIT user/tool convention.

 5

different contexts such as the example shown in Figure 2. The colon notation distinguishes the usage from the
definition. In Figure 2(b) for example, the heading r1:AreaEq indicates that r1 is a specific usage of the generic
constraint block definition called AreaEq.

In general, we envision that analysis libraries representing concepts and reusable equations for specific analysis
domains such as fluid dynamics will be implemented as SysML blocks and constraint blocks. The remaining
examples in Part 1 demonstrate one way to capture such knowledge. Part 2 shows how these analysis libraries can
be readily used to bind the value properties of the system design/architectural models to various types of analysis.

Implementation and Execution. SysML is intended to capture actual parametric models—not just
documentation—which can be solved by external tools. Here we describe one way to achieve this executable intent.

As seen in Figure 13, vendors are beginning to support SysML in their modeling tools—often by leveraging
their existing UML2 capabilities. Underneath the graphical diagrams and model tree browsers, these tools typically
capture model structure in a semantically rich manner. This enables ready execution of SysML constructs based on
UML2 such as sequence diagrams. However, since parametric constructs are new, current tools typically do not
support parametrics execution.

XaiTools™ [Wilson et al. 2001; Peak, 2000] is a toolkit that implements practically all COB concepts except the
graphical forms. Originally developed at GIT for design-analysis integration, it imports and exports COB models in
various lexical formats, including COS and COI files (Figure 15). It includes constraint graph management
algorithms that determine when to send what relations and values to which solvers, and how to pass the subsequent
results to the rest of the graph. In this way XaiTools enables links with design tools and effectively provides an
object-oriented, constraint-based, front end to traditional CAE tools, including math tools like Mathematica and
finite element analysis tools like Abaqus and Ansys (Figure 16).

State 1.1 (solved)

State 1.0 (unsolved)

Figure 3: TriangularPrism instance (from Figure 2) in XaiTools COB Browser—an object-oriented non-causal spreadsheet.

Leveraging these capabilities, we implemented the prototype architecture shown in Appendix A (Figure 17) to
demonstrate how one can author COBs as parametric models in a SysML tool and then execute them using
commercial solving tools. COS and COI models are generated from the SysML model structure and exported as
text files. XaiTools then loads these models and executes them as usual. Figure 3 shows the triangular prism
instance described earlier in before and after solving states. This XaiTools COB Browser application can be
considered an object-oriented non-causal spreadsheet that captures and manages the execution of parametric models.

2.2 Analytical Spring Systems
Next we walk through models of several analytical objects from high school physics. The primary purpose of these

 6

tutorial examples is to introduce additional SysML and COB modeling concepts. It also introduces thought
processes regarding how one can go about capturing such knowledge in the form of reusable SysML-based libraries.

Representation Using Classical COB Formulations. Figure 4 (a) and (b) show traditional forms of an idealized
linear spring object. Its shape schematic identifies variables and their idealized geometric context, and relations
define algebraic equations among these variables. As with the triangle/prism tutorial, Figure 4 (c)-(e) provide other
structural formulations that define linear_spring as a COB template.

L�

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x

Llength,0

2x
start,

end,

oLLL ���

12 xxL ��

LkF ��

r1

r2

r3

c. Constraint Schematic-S

FF
k

�L

deformed state

Lo

L

x2x1

a. Shape Schematic-S

LkFr
LLLr

xxLr

��
���
��

:
:
:

3

02

121

b. Relations-S

d. Subsystem-S
(for reuse by other COBs)

e. Lexical COB Structure (COS)

COB linear_spring SUBTYPE_OF abb;
undeformed_length, L₀ : REAL;
spring_constant, k : REAL;
start, x₁ : REAL;
end, x₂ : REAL;
length, L : REAL;
total_elongation, ΔL : REAL;
force, F : REAL;

RELATIONS
r1 : "<length> == <end> - <start>";
r2 : "<total_elongation> == <length> - <undeformed_length>";
r3 : "<force> == <spring_constant> * <total_elongation>";

END_COB;

Traditional Form

Spring
Elementary

L�L

Fk

1x L
0

2x

linear_spring
Spring

Elementary

L�L

Fk

1x L
0

2x

linear_spring

Figure 4: Analytical springs tutorial—linear_spring classical COB structural formulations.

Figure 5 shows a linear_spring instance in two main states. Throughout state 1, spring_constant, undeformed length,
and force are the inputs, and total_elongation is the desired output. The COI form, (b), represents state 1.0 as this COB
instance exists before being solved. State 1.1 shows it after solution, where one can see that length was also
computed as an ancillary result. Variables end and start have no values in State 1.1 because sufficient information
was not provided to determine them. State 5 shows this same linear_spring instance later after the user changed the
length variable to be an input, provided it a length value (the desired length after deformation), and changed the
spring_constant variable to be the target output.

Considering engineering semantics behind such scenarios, one sees that state 1 typifies a kind of design
verification scenario—the "natural inputs" (i.e., key design-oriented properties and a load) are provided as inputs
and a "natural output" (i.e., deformed length—a response to the load) is the requested output. Hence, the analytical
spring “design” is being checked to ensure it gives the desired response.

Along these lines, state 5 is a kind of simple design synthesis (sizing) scenario. It reverses the situation by
making one natural output into an input and setting one natural input to be the target output. It effectively asks
"what spring_constant (a design-oriented variable) do I need to achieve the desired deformed length (a response)?"
This COB capability to change input and output directions with the same object instance can be applied to more
complex situations. It is a multi-directional capability in that there are generally many possible input/output
combinations for a given constraint graph structure. It enables a form of simulation-based design (SBD) by driving
design from simulation and vice-versa.

Next we look at how systems can be composed from basic elements like linear_spring. Given an analytical
system containing two idealized springs as in Figure 6(a1), in traditional modeling approaches one might start by
drawing their freebody diagrams, (a2). From there one could list the analytical spring formulae and boundary
conditions, (b), and solve the resulting set of equations for target outputs (e.g., elongations at the individual and

 7

system levels). One could use symbolic math tools like Maple or Mathematica to aid this process and change
input/output combinations. However, one would essentially end up having a list of equations with only implied
engineering semantics. For example, one could not query relation r11 in the list and directly know that it is part of
the first spring. Furthermore, adding and deleting equations to change input/output directions for a large system of
equations could become unwieldy.

When one considers the constraint graph (Figure 6(d)) for this spring system, one recognizes that the shaded
portions are essentially duplications of the same kind of relations (e.g., r11 vs. r21). Traditionally, one would have
to manually replicate and adjust these similar relations via a tedious and error-prone process. COBs address these
semantic and usability issues by grouping relations and variables according to their engineering meaning and
capturing them within explicit reusable entities.

2 mm

40 N20 N/mm

20 mm

10 mm

32 mm

22 mm

L�

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x

Llength,0

2x
start,

end,

oLLL ���

12 xxL ��

LkF ��

r1

r2

r3

22 mm

10 N

2 mm

5 N/mm

20 mm

L�

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x

Llength,0

2x
start,

end,

oLLL ���

12 xxL ��

LkF ��

r1

r2

r3

a. Constraint Schematic-I b. Lexical COB Instance (COI)

state 1.0 (unsolved):

INSTANCE_OF linear_spring;
undeformed_length : 20.0;
spring_constant : 5.0;
total_elongation : ?;
force : 10.0;

END_INSTANCE;

Design Verification

Design Synthesis

state 1.1 (solved):

INSTANCE_OF linear_spring;
undeformed_length : 20.0;
spring_constant : 5.0;
start : ?;
end : ?;
length : 22.0;
total_elongation : 2.0;
force : 10.0;

END_INSTANCE;

state 5.0 (unsolved):

INSTANCE_OF linear_spring;
undeformed_length : 20.0;
spring_constant : ?;
start : 10.0;
length : 22.0;
force : 40.0;

END_INSTANCE;

state 5.1 (solved):

INSTANCE_OF linear_spring;
undeformed_length : 20.0;
spring_constant : 20.0;
start : 10.0;
end : 32.0;
length : 22.0;
total_elongation : 2.0;
force : 40.0;

END_INSTANCE;

example 1, state 1.1

example 1, state 5.1

Figure 5: Multi-directional (non-causal) capabilities of a COB linear_spring instance.

For example, by applying object-oriented thinking, the shaded regions in Figure 6(d) can be represented by two
linear_spring subsystems, as is done in (c). There is no need to specify these relations in the corresponding system-
level COS form, (e), as they are already included in the linear_spring entity per its COS definition (Figure 4).
System-level relations such as boundary conditions are the only relations that need to be specified here. With this
definition completed, the constraint graph can now be seen as another COB form that is derivable from the lexical
form. A constraint graph-S like (d) is effectively the fully decomposed form of its corresponding5 constraint
schematic-S (c)—it is flattened such that no subsystem encapsulations are present.

Representation Using SysML. One can similarly render SysML models for this analytical springs tutorial. Figure
7(a) is a block definition diagram showing that TwoSpringSystem is composed of two part properties, named spring1
and spring2, that utilize LinearSpring. Figure 7(b) and (c) show SysML parametric diagrams for LinearSpring and
TwoSpringSystem respectively. Note again the richer semantics enabled by SysML value types. DistanceMeasure
values are intended to represent position distance in space relative to an origin and can take on any real number,
while LengthMeaure values represent shape measures of physical things and thus they must be non-zero positives.

5 COBs can also have elements such as options, conditional relations, and variable length aggregates, in which case they have

not one but a family of corresponding constraint graphs.

 8

a1. Shape Schematic-S: Analytical Assembly

P

k1 k2

2u1u

L10

k1

x12

F1

�L1

L1

x11

F1

L20

k2

x22

F2

�L2

L2

x21

F2

a2. Shape Schematic-S: Freebody Diagrams

22223

202222

2122221

11113

101112

1112111

:
:
:
:
:
:

LkFr
LLLr

xxLr
LkFr

LLLr
xxLr

��
���
��

��
���
��

b. Relations-S

Boundary Conditions
Kinematic Relations

Constitutive Relations

1226

115

24

213

21122

111

:
:
:
:
:

0:

uLubc
Lubc

PFbc
FFbc
xxbc

xbc

���
��

�
�
�
�

Traditional Form

spring2
spring1

L10

k1

�L1

L1

L20

k2

x21

x22

F2

�L2

F1

x11

x12

u1 u2

P

L2

bc4

r12

r13

r22

r23

bc5
bc6

bc3

r11
r21

bc2

bc1

c. Constraint Schematic-S d. Constraint Graph-S

e. Lexical COB Structure (COS)
COB two_spring_system SUBTYPE_OF analysis_system;

spring1 : linear_spring;
spring2 : linear_spring;
deformation1, u₁ : REAL;
deformation2, u₂ : REAL;
load, P : REAL;

RELATIONS
bc1 : "<spring1.start> == 0.0";
bc2 : "<spring1.end> == <spring2.start>";
bc3 : "<spring1.force> == <spring2.force>";
bc4 : "<spring2.force> == <load>";
bc5 : "<deformation1> == <spring1.total_elongation>";
bc6 : "<deformation2> == <spring2.total_elongation> + <deformation1>";

END_COB;

System-Level Relations
(Boundary Conditions)

spring 1spring 1

Analysis Primitives
with Encapsulated

Kinematic & Constitutive
Relations

Spring

bc1

2u

spring 2

1u

P
Spring

Elementa ry

L�L

Fk

1x L
0

2x

122 uLu ���

bc2 bc3

bc4

bc6

Elementary

L�L

Fk

1x L
0

2x

bc5

linear_spring

011 �x

linear_spring

Spring

bc1

2u

spring 2

1u

P
Spring

Elementa ry

L�L

Fk

1x L
0

2x

122 uLu ���

bc2 bc3

bc4

bc6

Elementary

L�L

Fk

1x L
0

2x

bc5

linear_spring

011 �x

linear_spring

Figure 6: Analytical springs tutorial—two_spring_system classical COB structural formulations.

 9

(c) TwoSpringSystem parametric diagram.

spring1: LinearSpring

springConstant: N/mm = 5.50

start: = 0

end:

undeformedLength: mm = 8.00

totalElongation:

force:

length:

bc3:

spring2: LinearSpring

springConstant: N/mm = 6.00

start:

end:

undeformedLength: mm = 8.00

totalElongation:

force:

length:

bc2: bc5:

{u2 = dL2 – u1}

bc6: u2Eqn

dL2: u2:
u1:

deformation2:

bc4: load:

deformation1:

par [block] TwoSpringSystem [Definition view]

bdd [package] springSystems [Analytical spring tutorial]

«abb»
TwoSpringSystem

values
deformation1: DistanceMeasure
deformation2: DistanceMeasure
load: ForceMeasure

«abb»
LinearSpring

values
undeformedLength: LengthMeasure
springConstant: ForcePerLengthMeasure
start: DistanceMeasure
end: DistanceMeasure
length: DistanceMeasure
totalElongation: DistanceMeasure
force: ForceMeasure

spring2

(a) Analytical springs tutorial block definition diagram.

spring1

{F = k * dL}

r3: ForceEqn

k: F:
dL:

springConstant:

undeformedLength:

{dL = L – L0}

r2: deltaLengthEqn

dL: L:
L0:

force:

length:

(b) LinearSpring parametric diagram.

totalElongation:

{L = x2 – x1}

r1: LengthEqn

x1: L:
x2:

start:

end:

par [block] LinearSpring [Definition view]

Figure 7: Analytical springs tutorial—TwoSpringSystem SysML diagrams.

 10

Figure 7(d) represents an instance of TwoSpringSystem with state 1.0 being the inputs (givens) for a kind of
system design verification scenario. The user provides input values (in blue) for the intrinsic characteristics of the
analytical springs and a system load, and also indicates the primary target properties to solve for (deformation1 and
deformation2) as denoted by the red question marks. State 1.1 shows the results after solving, where one sees that the
total system deformation (u2) has been determined to be 3.49 mm. At this point the user could change one of the
input values and resolve (e.g., increasing spring1.springConstant to reduce the total deformation). Or one might
change input/output directions and calculate the required spring constant to achieve the target total deformation.

Figure 7 (continued): Analytical springs tutorial—TwoSpringSystem SysML diagrams.

Implementation and Execution. Figure 8(a) is lexical COB instance corresponding to Figure 7(d) state 1.0 as
generated from a parametrics model in a SysML tool (using the approach outlined in Figure 17). CXI is a relatively
newer COB lexical that is essentially an XML-based form of COI plus new capabilities (e.g., capturing causality
more completely). XaiTools reads in this CXI model and displays it in a COB browser before and after solving.
These figures exemplify the complementary relationship between SysML parametrics (for model authoring and
management) and COBs (for model execution).

 11

example 2, state 1.0 (unsolved)

(a) Lexical
COB instance
as XML (CXI)

example 2, state 1.1 (solved)

<linear_spring loid="_15">
<undeformed_length causality="given">8.0</undeformed_length>
<spring_constant causality="given">5.5</spring_constant>

</linear_spring>

<linear_spring loid="_25">
<undeformed_length causality="given">8.0</undeformed_length>
<spring_constant causality="given">6.0</spring_constant>

</linear_spring>

<two_spring_system loid="_3">
<spring1 ref="_15"/>
<spring2 ref="_25"/>
<deformation1 causality=" >
<deformation2 causality=" >
<load causality="given">10.0</load>

</two_spring_system>

(b) Parametrics execution in XaiTools

example 2,
state 1.0 (unsolved)

 12

3 Analysis Building Block Examples
SysML can be used to represent analytical engineering concepts as analysis building blocks (ABBs) [Peak, 2000;
Peak et al. 2001]. This section highlights sample ABBs representing mechanics of materials domain knowledge.

Figure 9(a) is the SysML parametric diagram for a material behavior ABB known as OneDLinearElasticModel.
This analytical model includes material properties such as Young’s modulus and relations such as stress-strain-
temperature constitutive equations. It is typically re-used in building continuum primitives like the two shown in the
same figure: (b) ExtensionalRod and (c) TorsionalRod. These continuum primitives in turn can be used to build other
analysis models, including product-specific analysis models as seen in Part 2 [Peak et al. 2007].

Note that traditional relations like Equation 1 (for total deformation in an extensional rod) need not be explicitly
included in parametric models. Rather, these types of relations are derivable from the fundamental relations present
in their corresponding ABB blocks; thus, the effective behavior of Eqn. 1 is automatically included in ExtensionalRod.

Figure 8: A COB instance generated from a SysML TwoSpringSystem model (Figure 7d) and its execution in XaiTools.

 TL
EA
FLL ���� � Equation 1

target"/
target"/

13

m
od

ul
ar

re
-u

sa
ge x

T
T

G
, r

, �
, 	

��

��

�
� �

 ,J

L o
y

x
F

F
E,

 A
, �

�L
L o

�T
, �

�,
��

y
L

�

�

(a
)

(b
)

(c
)

m
at

er
ia

lM
od

el
:

O
ne

D
Li

ne
ar

El
as

tic
M

od
el

Pu
re

S
he

ar

sh
ea

rM
od

ul
us

:

sh
ea

rS
tre

ss
:

sh
ea

rS
tra

in
:

un
de

fo
rm

ed
Le

ng
th

:

{d
Th

 =
 th

2
–

th
1}

r1
: t

w
is

tE
qn

th
2:

an
gl

eE
nd

2:

th
1:

dT
h:

an
gl

eE
nd

1:

tw
is

t:

{ta
u

=
T

*
r /

 J
}

r2
: t

au
Eq

n

J:
po

la
rM

om
en

tO
fIn

er
tia

:

T:

ta
u:

to
rq

ue

ra
di

us
:

r:

{g
am

 =
 d

Th
 *

 r
/ L

0}

r3
: g

am
E

qn

L0
:

r:

ga
m

:

dT
h:

pa
r [

bl
oc

k]
 T

or
si

on
al

R
od

 [D
ef

in
iti

on
 v

ie
w

]

m
at

er
ia

lM
od

el
:

O
ne

D
Li

ne
ar

El
as

tic
M

od
el

N
oS

he
ar

yo
un

gs
M

od
ul

us
:

te
m

pe
ra

tu
re

C
ha

ng
e:

no
rm

al
S

tre
ss

ct
e:

th
er

m
al

S
tra

in
:

el
as

tic
S

tra
in

:

to
ta

lS
tra

in
:

{e
to

t =
 d

L
/ L

}

r3
: e

to
tE

qn

dL
:

et
ot

:
L:

{d
L

=
L

–
L0

}

r2
: d

el
ta

lE
qn

L:L0
:

dL
:

un
de

fo
rm

ed
Le

ng
th

:

{L
 =

 x
2

–
x1

}

r1
: l

en
gt

hE
qn

x2
:

po
si

tio
nE

nd
2:

x1
:

po
si

tio
nE

nd
1:

{s
ig

 =
 F

 /
A

}

r4
: s

tre
ss

E
qn

A:
ar

ea
:

F:
si

g:
fo

rc
e:

{d
T

=
T

–
T0

}

ed
br

1:
 d

el
ta

tE
qn

T0
:

re
fe

re
nc

eT
em

pe
ra

tu
re

:

T:

dT
:

te
m

pe
ra

tu
re

:

pa
r [

bl
oc

k]
 E

xt
en

si
on

al
R

od
 [D

ef
in

iti
on

 v
ie

w
]

L:
le

ng
th

:

to
ta

lE
lo

ng
at

io
n:

Fi

gu
re

 9
: E

xa
m

pl
e

m
ec

ha
ni

cs
 o

f m
at

er
ia

ls
 a

na
ly

si
s

bu
ild

 b
lo

ck
s

(A
B

B
s)

—
S

ys
M

L
pa

ra
m

et
ric

 d
ia

gr
am

s.

4 Discussion
Normally end users will not need to create from scratch primitive templates like those above—triangle, prism, linear
spring, 1D material model, extensional rod, and torsional rod. Such commonly used entities should be pre-defined
and available in ready-to-use SysML libraries, along with frequently occurring ABB systems. This approach will
empower users to concentrate on composing higher-level models to represent and solve their engineering analysis
problems. However, it will take time and effort to create such libraries. While various vendor-specific engineering
model libraries are available6, SysML offers a way to wrap existing libraries in a vendor-neutral form and to create
new libraries from fundamental principles. Burkhart, Paredis, and colleagues [GIT, 2007c] are pursuing a multi-
aspect library approach for fluid power components. Peak [2002b and 2003] provides an initial characterization of
such libraries, estimating that there are, for example, on the order of several hundred ABB concepts in the structural
analysis domain.

The above examples demonstrate how SysML parametrics has largely subsumed COB graphical modeling
capabilities. As one becomes more familiar using a SysML modeling tool, other SysML capabilities beyond those
in COB formulations become evident (e.g., stereotypes, value types, and automated consistency checks), and
interactively composing diverse models becomes more of a reality.

The above examples also show COB formulation capabilities that are not yet readily available in SysML itself
and/or associated tools. Compare, for example, Figure 4(c) with Figure 7 and note that constraint blocks could use a
way to show their relations in a localized usage manner (and also offer the option to use symbols)—e.g.,
representing F=k�L using a generic a=b*c relation for r3. Shape schematics and flattened constraint graphs like
Figure 6(a) and (d) are other COB views that may be worth considering for future versions of SysML.

Instances, causality, and human-friendly lexical forms (e.g. XML in Figure 8) are other areas that may warrant
further attention, as seen by comparing Figure 1(g)-(f) with Figure 2(d). Frequent interaction with instances (and
associated instance libraries) may be one of the key differences between traditional UML2 usage for software
development vs. envisioned SysML usage for interactive system design, modeling, and simulation.

Finally, as users begin to get familiar with SysML, it is helpful to keep in mind that SysML is in its infancy,
relatively speaking, as a v1.0 technology. Additional capability needs are bound to be identified as the user
experience base grows over time. Some may require a v1.1 specification update, and others may not be addressed
until v2.0 or beyond. However, as evidenced by this paper and Part 2, experience to date indicates there is good
value to be gained utilizing SysML v1.0.

5 Summary and Conclusions
This paper progressively introduces SysML parametrics concepts through models of simple objects to demonstrate
how engineering analysis models can be integrated with system architecture/design models. Sample analysis
building blocks (ABBs) demonstrate how SysML captures engineering knowledge from mechanics of materials. A
high diversity example in Part 2 [Peak et al. 2007] reuses these ABBs in simulation-based design (SBD) scenarios
involving mechanical computer-aided design and engineering (CAD/CAE) models.

This paper also overviews the composable objects (COBs) knowledge representation that a) provided
motivation, semantics, and examples during the development of SysML parametrics, and b) continues to provide
means for executing SysML parametrics. We presented classical COB formulations alongside SysML diagrams for
the same models. This approach has hopefully given the reader a better understanding of SysML parametrics and
how to use it to create executable parametric models. It has also highlighted the following mutual benefits.

Benefits from COB technology for SysML parametrics:
� Provides a conceptual foundation

o Declarative knowledge representation (non-causal)
o Combination of object and constraint graph techniques

� Contributes engineering analysis test cases
o Variety: domains, CAD tools, behaviors, fidelities, CAE tools, etc. (see Part 2)

� Exercises and verifies numerous constructs systematically
� Enables architectures and methods for parametrics executability

6 See, for example: http://www.mathworks.com/applications/controldesign/, http://www.modelica.org/library/, and

http://www.wolfram.com/products/applications/mechsystems/

 14

Benefits from SysML technology for COBs:
� Provides richer modeling constructs

o Reusable relations, stereotyping, extended object constructs, etc.
� Integrates with other specification and design features of SysML
� Broadens and enhances support by commercial tools
� Increases modeling effectiveness (leveraging capabilities supported by numerous vendor tools)

o Tool-aided graphical view creation (e.g., all the SysML diagram types)
o Automated consistency between views

Test cases show that COBs and SysML together provide these advantages over traditional engineering analysis
representations:

� Richer semantics and greater expressivity
� Capture of knowledge in a modular, reusable manner
� Greater solution control

We believe SysML is poised to become a unifying representation for both domain-specific engineering analysis
models and system-level models, and to thus enhance multidisciplinary communication and speed system
development. Richer knowledge management becomes feasible, including capturing fine-grain associativity among
diverse models and leveraging this associativity for model execution. Therefore, we foresee how SysML and COB-
like representations might ultimately provide fundamental advances for next-generation systems lifecycle
management. This vision is not as farfetched as it might sound considering evidence like Figure 10 and the
following quote from the coming generation of system engineers:

“I believe that this process will be helpful to others because I have been doing the same thing in my head to
organize and understand the different equations and to help me solve problems successfully.”7

Initial results with high school physics class:
� Students using constraint graphs did 70% better

Figure 10: Enhancing education using constraint graph-based knowledge representations. [Cowan et al. 2003]

7 Source of quote: A student in a high school physics class commenting on using constraint graphs similar to SysML parametrics

to aid both concept learning and problem solving [Cowan et al. 2003]. Students who chose to use constraint graphs in this
class did 70% better on average that students who stuck with traditional approaches.

 15

Acknowledgements
This work was funded in part by NASA [GIT, 2007a] and NIST [GIT, 2007b]. SysML modeling work by Andy
Scott and Bennett Wilson at GIT has contributed to these examples. While at Artisan Software, Alan Moore played
a key role in the development of SysML parametrics, including aiding the incorporation of COB concepts into the
specification, as well as their implementation in Artisan Studio. While on the research faculty at Georgia Tech
(2005-2006), Diego Tamburini implemented some of the above examples in SysML tool prototypes. He also
developed the executable interface for SysML parametrics between Artisan Studio and XaiTools mentioned in
Appendix A. Similarly, EmbeddedPlus supported GIT efforts to develop an interface to their tools for COB-based
solving. Finally, our colleagues in the Georgia Tech SysML Forum have been a steady source of helpful feedback.

References8

Burkhart RM (2006) Modeling System Structure and Dynamics with SysML Blocks. Frontiers in Design & Simulation
Workshop9, GIT PSLM Center, Atlanta.

Cowan FS, Usselman M, Llewellyn D, Gravitt A (2003) Utilizing Constraint Graphs in High School Physics. Proc. ASEE
Annual Conf. & Expo. http://www.cetl.gatech.edu/services/step/constraint.pdf

Friedenthal S, Moore A, Steiner F (2006) OMG Systems Modeling Language (OMG SysML) Tutorial. INCOSE Intl.
Symposium, Orlando.

GIT (2007a) The Composable Object (COB) Knowledge Representation: Enabling Advanced Collaborative Engineering
Environments (CEEs), Project Web Page, Georgia Tech, http://eislab.gatech.edu/projects/nasa-ngcobs/.

GIT (2007b) Capturing Design Process Information and Rationale to Support Knowledge-Based Design-Analysis Integration,
Project Web Page, Georgia Tech, http://eislab.gatech.edu/projects/nist-dai/.

GIT (2007c) SysML Focus Area, Product & Systems Lifecycle Management Center, Georgia Tech,
http://www.pslm.gatech.edu/topics/sysml/.

OMG (2007a) OMG Systems Modeling Language (OMG SysML™) website: http://www.omgsysml.org/.
OMG (2007b) OMG Systems Modeling Language (OMG SysML™) Specification, http://www.omg.org/
 SysML 1.0 Proposed Available Specification (PAS), OMG document [ptc/2007-02-03] dated 2007-03-23.
Paredis CJJ, Diaz-Calderon A, Sinha R, Khosla PK (2001) Composable Models for Simulation-Based Design. Engineering with

Computers. Vol. 17, pp. 112-128.
Peak RS, Scholand AJ, Tamburini DR, Fulton RE (1999) Towards the Ubiquitization of Engineering Analysis to Support Product

Design. Invited Paper for Special Issue: Advanced Product Data Mgt. Supporting Product Life-Cycle Activities, Intl. J.
Comp. Applications Technology 12(1): 1-15.

Peak RS (2000) X-Analysis Integration (XAI)10 Technology. EIS Lab Report EL002-2000A, Georgia Tech, Atlanta.
Peak RS and Wilson MW (2001) Enhancing Engineering Design and Analysis Interoperability—Part 2: A High Diversity

Example. 1st MIT Conf. Computational Fluid & Structural Mechanics, Boston.
Peak RS (2002a) Part 1: Overview of the Constrained Object (COB) Engineering Knowledge Representation. Response to UML

for Systems Engineering Request for Information (SE DSIG RFI 1) OMG document ad/2002-01-17. http://syseng.omg.org/ .
Peak RS (2002b) Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability

for Simulation-Based Design & Related Topics. Intl. Conf. Electronic Packaging. JIEP/ IMAPS Japan, IEEE CPMT. Tokyo.
Peak RS, Lubell J, Srinivasan V, Waterbury SC (2004) STEP, XML, and UML: Complementary Technologies. Product

Lifecycle Management (PLM) Special Issue. J. Computing & Information Science in Engineering, 4 (4) 379-390.
Peak RS, Friedenthal S, Moore A, Burkhart R, Waterbury S, Bajaj M, Kim I (2005a) Experiences Using SysML Parametrics to

Represent Constrained Object-based Analysis Templates. NASA-ESA Workshop on Product Data Exchange (PDE),
Atlanta. http://eislab.gatech.edu/pubs/conferences/2005-pde-peak/

Peak RS, Tamburini DR, Paredis CJJ (2005b) GIT Update: Representing Executable Physics-based CAE Models in SysML.
Presentation to OMG SE DSIG, Burlingame CA. http://eislab.gatech.edu/pubs/seminars-etc/2005-12-omg-se-dsig-peak/

Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I (2007) Simulation-Based Design Using SysML—Part 2:
Celebrating Diversity by Example. INCOSE Intl. Symposium, San Diego.

Wilson MW (2000) The Constrained Object Representation for Engineering Analysis Integration. Masters Thesis, Georgia
Tech, Atlanta.

Wilson MW, Peak RS, Fulton RE (2001) Enhancing Engineering Design and Analysis Interoperability—Part 1: Constrained
Objects. 1st MIT Conf. Computational Fluid & Structural Mechanics, Boston.

8 Some references are available online at www.pslm.gatech.edu and http://eislab.gatech.edu/.
9 http://www.pslm.gatech.edu/events/frontiers2006/
10 X = Models throughout the product lifecycle including design (DAI), manufacturing (MAI), and sustainment (SAI).

 16

Author Biographies
Russell S. Peak is Associate Director and Senior Researcher in the Product & Systems Lifecycle Management
Center at the Georgia Institute of Technology (www.pslm.gatech.edu) and R&D Director at InterCAX LLC.

He specializes in information technology and knowledge-based methods for modeling and simulation (M&S).
His interests include product lifecycle management (PLM) frameworks based on open standards and knowledge
representations that enable complex system interoperability. Applications include systems engineering and
simulation-based design (SBD) in domains such as electronic packaging, airframe structural analysis, and systems-
of-systems (SoS).

Dr. Peak originated the multi-representation architecture (MRA)—a collection of patterns for CAD-CAE
interoperability—and composable objects (COBs)—a non-causal object-oriented knowledge representation. This
work has provided a conceptual foundation for executable parametrics in OMG SysML and associated validation.

Roger M. Burkhart develops information technology architecture for engineering and other areas at John Deere in
Moline, Illinois. His work emphasizes the use of computer-based models to enable collaboration across diverse
business and technical concerns. Previously at Deere, he developed decision-support systems for factory design and
production agriculture, simulation tools for multi-agent systems, and software frameworks for manufacturing
planning. He has been one of the main developers of the structural aspects of OMG SysML.

Sanford A. Friedenthal is a Principal System Engineer for Lockheed Martin Corporation. His experience includes
the system life cycle from conceptual design through development and production on a broad range of systems. He
has been manager for systems engineering responsible for ensuring systems engineering processes are implemented
on the programs.

He has been a lead developer of advanced systems engineering processes and methods including the Lockheed
Martin Integrated Enterprise Process, the Software Productivity Consortium's Integrated Systems and Software
Engineering Process, and the Object-Oriented Systems Engineering Method (OOSEM). Mr. Friedenthal also led the
Industry Standards effort through the Object Management Group and INCOSE to develop OMG SysML™ that was
adopted by the OMG in May, 2006.

Miyako W. Wilson is a Research Engineer in the Manufacturing Research Center at the Georgia Institute of
Technology. She received her Masters degree from Georgia Tech in the School of Mechanical Engineering. Her
research interests include computer-aided engineering and manufacturing and information technology. She is a lead
software developer for related engineering applications, including composable object (COB) capabilities in XaiTools
and associated interfaces to SysML tools.

Manas Bajaj is a PhD candidate in the School of Mechanical Engineering at the Georgia Institute of Technology.
His research interests are in the realm of knowledge representation, open standards and simulation-based design in
the context of product / system lifecycle management. He has authored several publications, including those that
won the Robert E. Fulton best paper award at ASME CIE 2005 and the session best paper award at Semicon West
2003. He was an intern with the IBM Extreme Blue program, a co-op at Rockwell Collins, and is a part time co-op
at InterCAX LLC.

Mr. Bajaj has been actively involved in Georgia Tech contributions to the OMG SysML specification. He also
serves as a technical team member in the PDES Inc. consortium.

Injoong Kim received his B.S. and M.S. in Mechanical Engineering at Yonsei University, Seoul. He is pursuing the
Ph.D. degree in the School of Mechanical Engineering at the Georgia Institute of Technology. Prior to joining to
Georgia Tech, he researched in the area of computer-aided engineering at Samsung Heavy Industries and Orominfo
for five years. His research interests include knowledge-based engineering systems, computer-aided simulation for
reliability, and engineering information systems.

 17

Appendix A
A.1 More about SysML
Figure 11 overviews the four main capability areas of SysML, and Figure 12 provides several of the value types
used in these Part 1 and Part 2 papers.

Figure 11: The four pillars of SysML [OMG, 2007a].

bdd [package] unitizedValueTypes [Samples]

LengthMeasure

«valueType»
dimension = Length

mm

«valueType»
unit = Millimeter

in

«valueType»
unit = Inch

AreaMeasure

«valueType»
dimension = Area

mm^2

«valueType»
unit = SquareMillimeter

in^2

«valueType»
unit = SquareInch

VolumeMeasure

«valueType»
dimension = Volume

mm^3

«valueType»
unit = CubicMillimeter

in^3

«valueType»
unit = CubicInch

ScalarStressMeasure

«valueType»
dimension = Stress

MPa

«valueType»
unit = MegaPascal

psi

«valueType»
unit =
PoundForcePerSquareInch

«valueType»
Real

Figure 12: Sample value types used in SysML examples in Parts 1 and 2—based on spec App. C.4 [OMG, 2007b].

 18

Figure 13: Sample parametrics implementation in a SysML tool (based on an early SysML spec draft).

A.2 More about Composable Object (COB) Technology
Subsystem-S

Object Relationship Diagram-S

COB Structure
Definition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEP
Express

Express-G

Lexical Formulations

OWL UMLXML

COB Instance
Definition Language

(COI)

Constraint Graph-I

Constraint Schematic-I

STEP
Part 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in OWL UML

Lexical Formulations

XML

a. COB structure languages. b. COB instance languages.

Figure 14: Classical lexical and graphical formulations11 of the COB representation.

Work began at GIT in 1992 on the technology that eventually led to what we today call composable objects (COBs). See [Peak,
2000] for further background including early engineering analysis applications to electronics. COBs were originally known as
constrained objects because of their constraint graph basis. Since 2005 they have been called composable12 objects to better
reflect their interactive model construction nature, which vendor support for SysML parametrics is beginning to make practical.

11 XML versions of COS and COI are available as of Fall, 2005 (see Figure 8). STEP EXPRESS (ISO 10303-11) is an object-

flavored information modeling standard geared towards the life cycle design and engineering aspects of a product
[http://www.nist.gov/sc4/]. See [Peak et al. 2004] regarding relationships among STEP, XML, and UML.

12 The word composable here is inspired by the composable simulation work that Prof. Chris Paredis and colleagues initiated at
CMU [Paredis et al. 2001].

 19

s

a b

dc

a

b

d

c
e

r1

[1.2]

[1.1]
f gcbe ��

r2

h

w
L [j:1,n]

wj

s

a b

dc

a

b

d

c
e

r1

[1.2]

[1.1]
f gcbe ��

r2

h

w
L [j:1,n]

wj

variable a subvariable a.d
subsystem s
of cob type h

equality relation
e = f

relation r1(a,b,s.c)

subvariable s.b

option 1.1:
f = s.d

option 1.2:
f = g

option category 1

aggregate c.w
element wj

variable a subvariable a.d
subsystem s
of cob type h

equality relation
e = f

relation r1(a,b,s.c)

subvariable s.b

option 1.1:
f = s.d

option 1.2:
f = g

option category 1

aggregate c.w
element wj

200 lbs

30e6 psi
Result b = 30e6 psi
(output or intermediate variable)

Result c = 200 lbs
(output of primary interest)

X

Relation r1 is suspended
X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

a. Structure notation (-S). b. Instance notation (-I).

Figure 15: Basic COB constraint schematic notation.

Client PCs

XaiTools

Rich Client

Internet

Apache Tomcat

Mathematica

Ansys, Patran,
Abaqus, ...

Internet/Intranet

XaiTools Ansys
Solver Server

XaiTools Ansys
Solver Server

XaiTools Math.
Solver Server

Servlet container

XaiTools Solver
Server

FEA Solvers

Math Solvers

Soap Servers

SO
AP

...

Engineering
Service Bureau

Host
Machines

W
eb S

erver

HTTP/XML
Wrapped Data

Figure 16: CAE solver access via XaiTools engineering web services.

Composable Objects (COBs)

COB Services (constraint graph manager, including COTS solver access)

XaiTools

Ansys
(FEA Solver)

Native Tools Models

Traditional
COTS or in-house

solvers

SysML-based COB Authoring

COB export

COB Solving & Browsing

COB APICOB API

...

Exchange
File

XaiToolsSupported
Vendor Tools
1) Artisan Studio
2) EmbeddedPlus

Mathematica
(Math Solver)

Figure 17: Prototype COB-based architecture for executable SysML parametrics.

 20

