
ENES 489P Hands-On Systems Engineering Projects

Strategies of Systems Engineering Development

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/21

Topic 3: Systems Engineering Development

Topics:

1. Top-down and bottom-up development.

2. Guidelines for design decomposition.

3. Established strategies of development.

4. Course Preview

– p. 2/21

Top-Down and Bottom-Up Development

Top-down design (decomposition)

NEW PROBLEM

DECOMPOSITION

SUB-PROBLEMS

Bottom-up development (synthesis)

COUPLED MODULESINDEPENDENT MODULES

COMPOSITION

– p. 3/21

Top-Down and Bottom-Up Development

Advantages/Disadvantages of Top-Down Decomposition

• Can customize a design to provide what is needed and no more.

• Decomposition simplifies development – lower-level (sub-system)
development may only require input from a single discipline.

• Start from scratch implies slow time-to-market.

Advantages/Disadvantages of Bottom-up Development

• Reuse of components enables fast time-to-market.

• Reuse of components improves quality because components will have
already been tested.

• Design may contain (many) features that are not needed.

– p. 4/21

Example of Top-Down Development

Example 1. Layered development and organization of requirements at NASA Goddard.

Level 1 −− Science Requirements

Level 0 −− Mission Objective.

Level 3 −− Sub−system
requirements

Level 2 −− System−level engineering
requirements

Requirements are organized into clusters for team development.

– p. 5/21

Example of Top-Down Development

Example 2. Top-down decomposition and bottom-up synthesis coupled to reuse of
objects/sub-systems.

– p. 6/21

Guidelines for Design Decomposition

Level 2

A

B C D

E F G H I

Level 0

Level 1

Guidelines for the design of modules are:

1. One module should have no more than seven subordinate modules.

2. There should be separation between the controller modules and the worker modules.

3. Every module must perform a task appropriate to its place in the hierarchy.

4. Modules should only receive as much information as they need.

The motivation for following these guidelines is modules that will be functional, easy to
understand, testable, and reusable.

– p. 7/21

Guidelines for Design Decomposition

Coupling

Coupling is a measure of the interface complexity (or degree of interdependence)
between modules.

HIGHLY - COUPLED SYSTEM LOOSELY - COUPLED SYSTEM

In design, we should:

1. Keep the interfaces as minimal as possible;

2. Keep the interfaces as simple as possible, when in fact, one must exist.

– p. 8/21

Guidelines for Design Decomposition

Cohesion

Cohesion is a measure of how well the components of a module are related to one
another (put another way, cohesion is a measure of the functional association of the
element within an element).

In design, we should:

1. Keep related functions together;

2. Keep unrelated functions apart.

Coupling and cohesion work together

Generally speaking, ...

...modules with components that are well related will have the capability of
plugging into loosely coupled systems.

– p. 9/21

Guidelines for Design Decomposition

Module Complexity

Modules should be kept as simple as possible, and hide the details of implementation
from the outside environment.

C1

C2

C3

C4

C5

2 INPUTS

3 OUTPUTS

5 INTERNAL COMPONENTS

4 INTERNAL INTERFACES

Figure 1: Elements of module complexity.

Three factors that contribute to module complexity are: (a) its size, (b) the number of
internal functions and connections within the modules, and (c) the number of interfaces
to the modules.

– p. 10/21

Established Strategies of Development

Strategy 1. Simplify Design through Separation of Concerns

Complex systems are often characterized by ...

... many components, intertwined network structures, concurrent behaviors, and
complicated communications and interactions among subsystems and components.

To facilitate understanding of these design issues/concerns, we aim to

... pull a design apart and examine it from perspectives (or ”facets” or viewpoints)
that are almost orthogonal, thereby factoring out so-called cross-cutting concerns.

Achieving (almost) orthogonality of concerns is important because ...

... it means we can explore options in one viewpoint (or dimension of design)
without affecting other concerns.

– p. 11/21

Established Strategies of Development

Example 1. Separation of concerns (e.g., structure, behavior, communication) in simple
network.

Position (x,y), Size

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

����
����
����
����

����
����
����
����

Structure Communication

Function

Ordering of functions

Hierarhical Decomposition

Topology

Objects

Protocols

Interface

−− syntax, semantics

A B C

Design

Geometry

���
���
���
���

��
��
��
��

��
��
��
��

Behavior

CA

– p. 12/21

Established Strategies of Development

Example 2. Synthesis of models for engineering system and surrounding environment.

−− What events happen in the surrounding environment?−− What does the system do?

−− How is the sytem built?
−− What are the objects in the system?
−− How are the objects organized?

Structure

Behavior Behavior

Structure

Constraints

Input

Output

Engineering System Model Environmental Model

Environment

Engineering System

Validation

Abstraction

V
al

id
at

io
n

Abstraction

Real−World System and Environment

−− How will the system respond to
unusual events?

−− What objects are in the environment?
−− How is the surrounding environment built?

−− How are the objects organized?

−− What about uncertainties in the environment?
−− How will the environment and system interact?

– p. 13/21

Established Strategies of Development

Example 3. Separation of SE activities/products – requirements, design and validation
results.

Specification

Requirements
analysis

Functional analysis
and allocation.

−− Generate options
−− Develop variants
−− Prepare design

Design

Requirements Design

Selection and Reduction

Validation and Verification

– p. 14/21

Established Strategies of Development

Strategy 2. Function before Physical

We promote the description of systems in two orthogonal ways:

• The function that the systems is intended to provide,

• Candidate architectures for realizing the functionality.

Function-Architecture Co-Design

Map models of system behavior onto system structure alternatives.

Map Model of
System Structure 1

System Design
Alternative 1

Model of
System Structure 2 Alternative 2

System Design

Evaluation and
Ranking of
Design Alternatives

−− Scenario 2
−− Scenario 1

System Behavior
Model of

Map

Identify measures of effectiveness. Then evaluate and rank design alternatives.

– p. 15/21

Established Strategies of Development

Benefits of Function-Architecture Co-Design

Lessons learned in industry indicate that a clean separation of system functionality and
system architecture enables:

1. Much easier modifications of the design at the system level,

2. More effective exploration of alternative solutions.

3. Reuse of major components.

– p. 16/21

Established Strategies of Development

Strategy 3. Layered Approach to Development

The tenet of “breadth before depth” leads to a layered approach to development.

Interface

System Behavior

System Structure

map

flowdown feedback
delivery

RequirementsSystem Level System
Validation / Verification

ImplementationModelsRequirementsLevel of Concern

flowdown

Component Level

Subsystem Level

Requirements

Component Structure

Component Behavior
map Validation / Verification

Component

flowdown feedback

Requirements

Subsystem Structure

Subsystem Behavior
map

delivery

Validation / Verification
Subsystem

flowdown

Interface

– p. 17/21

Course Preview

Problem Definition. Development of an Operations Concept.

Pathway from goals and scenarios to simplified models of behavior and requirements.

High−Level Requirements.

Activity Diagrams

Sequences of tasks

between ohjects.
Sequence of messages

Models of System Behavior
and System Structure.

Req 1.

Req 2.

−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence Diagrams

Individual Use Cases
and Scenarios

−− scenario 4

– p. 18/21

Course Preview

Key Points:

• The functional description dictates what the system must do.

Here, we employ a combination of use cases (and use case diagrams), textual
scenarios, and activity and sequence diagrams to elicit and represent the required
system functionality.

• A complete system description will also include statements on minimum levels of
acceptable performance and maximum cost.

Since a system does not actually exist at this point, these aspects of the problem
description will be written as design requirements/constraints.

• Further design requirements/constraints will be obtained from the structure and
communication of objects in the models for system functionality (e.g., required
system interfaces).

– p. 19/21

Course Preview

Problem Solution. Pathway from Requirements to Models of System Behavior/Structure
and System Design

Domain

Goals and
Scenarios

Structure
System

Objects and
AttributesAttributes

Performance

Behavior
System

System
Design

System
Evaluation

Traceability
Traceability

Mapping

Mapping

Traceability via

use cases. Requirements
Project

Specification
System

Operations Concept

Detailed description of
the system’s capabilities.

Iteration strategy

to satisfy constraints.

Selection of
System
Architecture

Traceability

Problem

Domain
Solution

– p. 20/21

Course Preview

Key Points:

• Requirements are organized according to the role they will play in the system-level
design.

• Models of behavior specify what the system will actually do.

• Models of structure specify how the system will accomplish its purpose.

• The nature of each object/subsystem will be captured by its attributes. Attributes
includes:

• The attributes of the physical structure of the design,

• The attributes of the environmental elements that will interact the the system.

• Attributes of the system inputs and system outputs

• We create the system-level design by mapping fragments of system
functionality/behavior onto specific subsystems/objects in the system structure.

– p. 21/21

	ptsize {14} Topic 3: Systems Engineering Development
	ptsize {14} Top-Down and Bottom-Up Development
	ptsize {14} Top-Down and Bottom-Up Development
	ptsize {14} Example of Top-Down Development
	ptsize {14} Example of Top-Down Development
	ptsize {14} Guidelines for Design Decomposition
	ptsize {14} Guidelines for Design Decomposition
	ptsize {14} Guidelines for Design Decomposition
	ptsize {14} Guidelines for Design Decomposition
	ptsize {14} Established Strategies of Development
	ptsize {14} Established Strategies of Development
	ptsize {14} Established Strategies of Development
	ptsize {14} Established Strategies of Development
	ptsize {14} Established Strategies of Development
	ptsize {14} Established Strategies of Development
	ptsize {14} Established Strategies of Development
	ptsize {14} Course Preview
	ptsize {14} Course Preview
	ptsize {14} Course Preview
	ptsize {14} Course Preview

