Prognostics System For Military Wheeled Vehicles

Craig Hershey November 29, 2005

Overview

- System Description
- Goals
- Requirements Overview
- Difficulties & Benefits
- Summary

Example of Application to a Wheeled Vehicle

Reasons For Prognostics

- Maintain vehicles available for combat/missions
- Components fail from fatigue damage
 - Suspension, steering, drive train, electronics, etc...
 - Vibration and shock loading from terrain
 - Temperature, vibe, shock for electronics
- System calculates the life remaining of select components from accumulated use or damage
 - Ability to characterize usage severity on-board in real-time
 - Provide commanders and maintainers with immediate feedback for deployment decision-making
 - Potential for failure alerts
 - Provide user with indicators of component failures (wheel separation, strut)
 - Potential for usage safety characterization
 - Provide user with indicators of possible unsafe usage (speed, terrain roughness)
 - Potential for fatigue-based prognostics
 - Initial efforts focusing on steering and suspension components

Prognostics System

Hardware Installation:

- •Small, rugged, COTS data acquisition box nCode eDAQ-Lite
- •**Data bus** multiple parameters (engine RPM, % load, etc)
- •**GPS** (long, lat, alt, time, etc) built into data acquisition box
- •Suspension Sensor System built-in to every Stryker on axles 1 and 3
- •3 accelerometers only added sensors mounted on vehicle hull interior
- About 3 hours per vehicle for installation

Data downloading:

- Histogram and rainflow cycle counting data can be stored indefinitely
- •Time history can be stored for approximately 20 days
- Download to laptop via wired or wireless Ethernet

Overview of System

System Goals

- Logistics
- Mission Success
- Availability
- Cost Savings
- Decrease fatality
- Decrease loss of vehicles
- Maintenance Cost

Project Goals

- Organize requirements
- Verification & validation of requirements
- Visualization of requirements
- High-level representation of system
- Way to address concerns

1

Requirements

- Traceability
 - Use Case to component
 - Requirement to test/analysis and training
- Requirements Layering
- Requirements
 - Training
 - Functional
 - User
 - Performance
 - Test/Analysis (verification)
 - Design
 - Goals
 - Verification (test)

Requirements (cont'd)

Design Requirements (Design Goals or Needs)

- Component's fatigue limit is known.
- Damage algorithms accurately predict accumulated damage

User Requirements

- Maintainer/Driver understand how to operate system
- Driver understands course of action when an alert occurs

Functional Requirements (F#)

- System must be able to monitor components without requiring maintenance, downloading, or calibration for every mission (7 day mission).
- System must meet all specifications that vehicle meets.

Verification of Requirements

Component's fatigue limit is known

 FEA/Fatigue analysis to determine fatigue limit

System does not create EMI

Test system for EMI

System does not send false alerts

Endurance test to verify accuracy

Maintainer/Driver understand how to operate system

Operational test with crew to test system

Difficulties

- Overall Difficulties
 - Being aware of current goals vs. long term goals
 - Keeping a high level of abstraction
- Requirements
 - Developing testing, training, and analysis requirements for verification
- Optimization
 - Finding numbers for optimization

- Requirements engineering is important for this application
- Performing optimization important for ROI