

UNIVERSITY OF MARYLAND

COLLEGE PARK

SYSTEMS ENGINEERING VALIDATION AND
VERIFICATION

ENPM643

TERM PROJECT:
Ontology-Enabled Validation of Systems

containing Electric Terminals

FINAL REPORT

PROFESSOR: MARK AUSTIN

STUDENT: FRANCISCO J GALLO

DEC/6/2005

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

1/10

TABLE OF CONTENTS

1. DESCRIPTION OF PROJECT... 2

2. INTRODUCTORY REMARKS.. 2

3. FINAL DELIVERABLES OBTAINED FROM THIS PROJECT.......................... 2

4. PROJECT IMPLEMENTATION DESCRIPTION .. 3

4.1. STEP: ANALYSIS OF BASE SYTEM AND CREATION OF BASIC RULES FOR

ONTOLOGY... 3
4.2. STEP: IMPLEMENTATION OF ONTOLOGY IN PROTÉGÉ................................ 3
4.3. STEP: GENERATION OF XML FILES AND CREATION OF XSLT STYLE SHEETS .. 4
4.4. STEP: CREATION OF ONTOLOGY VALIDATION TOOL 5

5. STEPS FOR USING THE ONTOLOGY VALIDATION TOOL........................... 8

6. REFERENCES... 10

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

2/10

1. DESCRIPTION OF PROJECT

The primary goal of this project is to develop a tool that allows the validation of connections
between electrical terminals.

Secondary goals of this project are:

1) Define a framework for defining and identifying the different elements needed to
interconnect components in a system. This framework is approached at a case study
level and can be extended as necessary.

2) Using the framework, create an ontology that implements key aspects of it and that
allows to validate the use of components included in the ontology.

3) Implement a tool that is capable of validate connectivity of electrical terminals by using
the hierarchical schema defined in the ontology.

4) Use XML as a data-storage mechanism to validate formal data and to move it between
applications.

5) Gain understanding of tool Protégé.

2. INTRODUCTORY REMARKS

Work done in this project was based on papers by [Mayank] and [Liang] and on reference
materials provided by Professor Mark Austin. This project was strongly based on the following
technologies:

1. Stanford’s Protégé
2. XML
3. XSLT
4. XPATH
5. VBA
6. Excel

3. FINAL DELIVERABLES OBTAINED FROM THIS PROJECT

1. Ontology Validation Tool: Implemented in VBA and Excel XP. This tool is capable of
importing XML data containing instances of a predefined ontology and then, allows the
user to test connectivity between elements. This tool displays detailed information about
compatible/incompatible attributes and works seamlessly with XML generate by Protégé.
The ontology validation tool has been implemented as a macro in file
“OntologyValidationTool_V.N.n.xls”.

2. Ontology in Protégé: A Protégé project containing an ontology for electrical ports has
been fully implemented. This ontology is based on the rules and knowledge gained by
analyzing a Home Theater System. The Protégé project has been include in file
“PortOntology.pprj”.

3. Electrical Terminal Ontology Specification: Document (see file
“Annex01_ElectricTerminalsOntologySpecification”)) containing the analysis process
done on a Home Theater System. This analysis provided the framework to implement the
ontology in Protégé.

Other achievements done as result of this project:

1. Analyzed the XML hierarchy that Protégé creates. Documented this hierarchy in file
“Annex04_ProtegeXMLSchemaAnalysis.xls” for future reference.

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

3/10

2. Created XSLT template using XPATH to provide style to XML generated by Protégé
allowing seamless integration with XML/XSLT capable environments.

4. PROJECT IMPLEMENTATION DESCRIPTION

4.1. STEP: ANALYSIS OF BASE SYTEM AND CREATION OF BASIC RULES FOR
ONTOLOGY

Due to the complexity of this step, it was decided to include it as an Annex. Please refer to file
“Annex01_ElectricTerminalsOntologySpecification_v.0.2.doc” for details on how this was done.

Please note that some Annex 1 provides some important definitions that will be used from now
on. It is strongly recommended to read it before continuing with present document.

4.2. STEP: IMPLEMENTATION OF ONTOLOGY IN PROTÉGÉ

Through an iterative process using Protégé, the ontology needed to describe a set of electrical
terminals was implemented. This ontology is in a Protégé project file.

The Electrical Terminals Ontology (ETO) implemented in Protégé is focused in the description of
the Terminals needed for a set of ports to work properly. Bear in mind that a Port is a composition
of Terminals.

Concepts used to categorize the classes and defining their attributes are based on Liang [2].
These are: function, behavior and form.

Function has been used to define the top-level classes based on the nature of the service they
provide. For example: power or information transmission.

Behavior has been used to define the bottom-level classes based on how the service is
implemented. For example, digital or analog signals. Also, behavior has been used to define
certain attributes of the classes, such as the operating frequency, impedance and others.

Form has been provided as an attribute in the ontology. Since describing the form of a connector
implies a complexity beyond the scope of this project, the abstract approach to shape
specifications suggested by Liang [3] is used. This is, instead of providing the physical details of
form, a certain standard name is defined (e.g. StandardRoundTerminal). Then, the description of
a certain Terminal can be progressively elaborated in additional detail by extending what the
abstract shape specification means (Round connectors, with two parallel blades separated x
inches, etc.) The important concept here is that for two Terminals to work as a Port, they must
have the same abstract shape specification and one has to be male and the other female.

Figure 4.1 shows a screenshot of Protégé and the ETO that was implemented. In the left pane,
the hierarchy of classes that compose the ontology can be appreciated. Note that the
fundamental concept of how classes have been grouped is the way the energy is used (Power or
Information; Analogical or Digital).

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

4/10

Figure 4.1

Figure 4.2 shows another view of Protégé in which the instances created using the ontology can
be appreciated. Note that all the files created in Protégé have been submitted along with this final
report.

Figure 4.2

4.3. STEP: GENERATION OF XML FILES AND CREATION OF XSLT STYLE SHEETS

Once the ontology was created in Protégé, it can be exported into XML. To do this, the option
shown in Figure 4.3 was selected in Protégé. This creates an XML file in the Protégé workspace
folder for this project.

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

5/10

Figure 4.3

After doing this, the XML file has to be modified so it can be imported into Excel as a flat table
where the hierarchy has been properly transformed. The steps to do this are explained in file
“Annex05_StepsToExportImportXML_v.N.n.doc”.

The modifications shown in such annex connect the XML file to the XSLT template that was
implemented using XPATH. This XSLT template is in file “_PortOntology_Instances.xsl” in the
folder where all the Protégé related folders have been included. Please note that file
“PortOntology_Target-Instances.xml” is the final XML template that will be used to validate the
connections. Files “PortOntology_Target-Classes.xml” and “PortOntology_Target-Slots.xml” are
byproduct obtained during the reverse engineering process.

In order to create the XPATH code implemented in the XSLT file “_PortOntology_Instances.xsl” it
was necessary to analyze the XML hierarchy created by Protégé. This analysis can be
appreciated in file “Annex04_ProtegeXMLSchemaAnalysis_v.N.n.xls”. A screenshot of the
contents of this file has been included here for convenience, please see Figure 4.4. Note how the
hierarchy is a three-tier schema in which the attributes for each instance are provided at the leaf
level.

4.4. STEP: CREATION OF ONTOLOGY VALIDATION TOOL

Using Excel and its built in XML capabilities, data in XML file from Protégé was imported into a
tab. An analysis process of the data was done and a step-by-step tool was implemented. This
tool in VBA is capable of retrieving all the instances from the XML data and then generates drop-
down menus that the user can utilize to validate connectivity of terminals. Figure 4.5 shows the
data imported to Excel by applying the XSLT template.

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

6/10

Figure 4.4

Figure 4.5

In the Excel tool, by going to the tab “02_Analyzer” the user can access the drop-down menus
generated by the software and can test different combinations of terminals for compatibility. In
Figure 4.6 such tab can be appreciated. Note how parameters that are not compatible are
marked in red and those that are compatible are highlighted in green. Also observe how in cell B2
the user can indicate the direction of power flow. This affects the criteria used to determine
whether connectivity is possible or not.

Column “validation” displays a symbol indicating why a certain parameter is not compatible. For
example in screenshot in cell E6, “<>” is displayed. This indicates that the reason why the

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

7/10

corresponding attribute was not validated is because it differs and the rule says that an exact
match is required.

Figure 4.6

The process uses for validating a certain attribute is based on a series of rules included in tab
“03_Rules”. Figure 4.7 shows this tab. User can modify these rules with relative ease as long as
they remain consistent with the Ontology in Protégé.

Figure 4.7

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

8/10

5. STEPS FOR USING THE ONTOLOGY VALIDATION TOOL

The sequence of validating terminals with the Excel-based tool is activated by pressing “Ctrl +
Shift + A”. The sequence of steps is:

1) Go to tab “02_Analyzer” and set cells A2 and C2 to blank.
2) Import data from XML file to tab “01_Terminals”.
3) Hit “Ctrl + Shif + A”. This will read the data and will identify all the instances available. Go

to tab “02_Analyzer” and a drop down menu should have been generated. See Figure
5.1.

Figure 5.1

4) Select one instance in menu in cell A2.
5) Hit “Ctrl + Shift + A” again. This will:

a. Populate the parameters of the instance you selected. See Figure 5.2.
b. Generate a new drop down menu in cell C2. This menu contains the instances

that based on class-level validation are compatible with the instance selected in
cell A2.

6) Select an instance in cell C2.
7) Press “Ctrl + Shift + A”. Figure 5.3 shows how the attributes of the second instance are

retrieved and then validated in red and green as explained before.

In order to test a different instance in cell A2 in tab 02 you need to:

1) Delete contents of cell A2.
2) Delete contents of cell C2
3) Run tool again with “Ctrl + shift + A” and proceed to select a new instance from cell A2.

This process of clearing cells is necessary to prevent inconsistencies caused by changes
done to instances being tested after instance 2 has been selected.

If you want to test a different instance in cell C2, simply change it in the menu and press “Ctrl +
Shift + A”. It is not necessary to clear cell A2 if you are not going to change instance 1 (terminal to
test).

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

9/10

Figure 5.2

Figure 5.3

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: FinalReport_v.0.1.doc

Author: Francisco Gallo

10/10

6. REFERENCES

1. Mayank, Vimal; Kositsyna, Natalya; and Austin, Mark– “Ontology-Enabled Validation of
System-Level Architectures”; Institute for Systems Research, University of Maryland,
College Park

2. Liang, Vei-Chung; and Paredis, Christiaan J.J. – “A Port Ontology For Automated Model
Composition”; Institute for Complex Engineered Systems, Carnegie Mellon University

3. Liang, Vei-Chung; and Paredis, Christiaan J.J. – “A Port Ontology For Conceptual Design
of Systems”; Journal of Computing and Information Science in Engineering - Sep/2004,
Vol 4, Pgs: 206-217

4. Austin, Mark; “Introduction to Systems Engineering – Information Centric Systems
Engineering”; Institute for Systems Research, University of Maryland, College Park

ANNEX 1
Electric Terminals Ontology Specification

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex01_ElectricTerminalsOntologySpecification_v.0.2.doc

Author: Francisco Gallo

1/5

TABLE OF CONTENTS

1. PURPOSE OF THIS DOCUMENT.. 2

2. SCOPE OF THE ONTOLOGY .. 2

3. CONSTRUCTION OF THE ETO .. 2

3.1. ANALYSIS OF BASE SYSTEM (HTS)... 2
3.2. INTRODUCTION OF NAMING CONVENTION.. 4

3.2.1. CONNECTORS – PATH .. 4
3.2.2. PORTS – LOCATION ... 5
3.2.3. ACCESS POINT – LOCATION.. 5
3.2.4. PLUG – LOCATION ... 5

3.3. IDENTIFICATION OF ALL CONNECTORS, PORTS AND TERMINALS................ 5

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex01_ElectricTerminalsOntologySpecification_v.0.2.doc

Author: Francisco Gallo

2/5

1. PURPOSE OF THIS DOCUMENT

The purpose of this annex is to document the process identifying the concepts needed to create
an Electric Terminals Ontology (ETO) in Protégé.

Also in this annex, a naming convention will be introduced. The purpose of this naming
convention is to provide an accurate an unambiguous way to name all the connections of a
system with a similar complexity to the one used as a reference (Home Theater System, more
details will be provided about this later). Note that since the Ontology created in Protégé used the
system just as a template and did not map all the elements, the naming convention was not
applied as a whole. However it was decided to leave it here as it may become useful in case that
this project is enhanced in the future.

Note that the project files in Protégé are named “Port Ontology”. Don’t be confused because of
this. Under the framework that will be explained in this document, Terminals are a subset of
Ports, therefore by calling the project using Ports its contents can be extended without generating
inconsistencies with its name.

2. SCOPE OF THE ONTOLOGY

This ETO will be created using a basic set of electrical ports as a template. More specifically the
ports needed to connect the components of a Home Theater System (HTS). This ontology is
based on the work done by Mayank [1] and Liang [2, 3] as well as other sources that will be
appropriately cited.

The ETO aims at describing the entities whose composition defines a Port. These entities will be
called Terminals. By ensuring the proper coupling of its Terminals, correct behavior of a Port is
guaranteed.

3. CONSTRUCTION OF THE ETO

3.1. ANALYSIS OF BASE SYSTEM (HTS)

The HTS that will be used as a model to define the ETO corresponds to the commercial model
Panasonic SC-HT380 (Figure 3.1). The goal is that after the ETO has been defined, any HTS
Terminals can be modeled using it as long as they fall within the categories defined in the
ontology.

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex01_ElectricTerminalsOntologySpecification_v.0.2.doc

Author: Francisco Gallo

3/5

Figure 3.1

The components of interest of this HTS are:

Component Number Component Name
1 Front-Left speaker
2 Front-Right speaker
3 Surround-Left speaker
4 Surround-Right speaker
5 Subwoofer
6 Central voice speaker
7 Central unit
8 AM Loop Antenna
9 FM Indoor Antenna

Table 3.1

In addition to these components, the HTS needs to interact with other additional external (i.e. not
provided with the HTS) components:

Component Number Component Name
E1 TV set
E2 Power outlet
E3 TV Antenna

Table 3.2

Now, some definitions are introduced:

Connector: Any cable or wire going from one component to another.

Port: Point where one component is coupled to a Connector. If a Connector is attached to a
component in such a manner that the Connector cannot be unplugged from the component, by
definition, no connection exists. Note that this is consistent with Liang in [2].

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex01_ElectricTerminalsOntologySpecification_v.0.2.doc

Author: Francisco Gallo

4/5

Terminal: Physical element whose composition defines a Port. There are two kinds of Terminals:
Access Points and Plugs. For a Port to work properly, the Terminals composing it must fulfill
certain conditions.

Access Point: Terminal located in a component where a Connector is plugged. An
Access Point can be either Male or Female.

Plug: Terminal located at the end of a Connector that is plugged into a component. A
plug can be either Male or Female.

A basic block diagram showing all the Connectors and components of the HTS is shown in Figure
3.2.

Figure 3.2

3.2. INTRODUCTION OF NAMING CONVENTION

Using diagram in Figure 3.2, a series of conventions will be defined to describe:

1. The path of each Connector.
2. The location of each Port.
3. The location of each Access Point.
4. The location of each Plug.

Note that these conventions do not include details regarding the categories suggested by Liang in
[2]: form, function and behavior. Those categories will be dealt with later on.

3.2.1. CONNECTORS – PATH

The path of each Connector is labeled as [#to#]. The first number is the component that sends
the signal (information/power) and the second number is the component that receives it.

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex01_ElectricTerminalsOntologySpecification_v.0.2.doc

Author: Francisco Gallo

5/5

When there is more than one connection between two components, the convention is [#to#,α],
where α is A, B, etc. This can be seen in the connections between the Central Unit and the TV
set. One connection (A) is for video and the other two for left (B) and right (C) audio channels.
When there is only one connection, the “α” can be simply omitted.

3.2.2. PORTS – LOCATION

Each Connection may have one or two Ports. The Port at the end that is located next to the
component that sends the signal will be called the Start Port. Similar, the Port at the other end will
be called the End Port. This concept will be referred to as Directionality.

Since all the speakers and antennas have the wire attached to them and need to be plugged only
to the Central Unit, these components have only either a Start or an End Port. The TV set and the
Power Outlet use Ports that need to be plugged at both ends and that are not permanently
attached to any of the components. Therefore, Connectors [7toE1,A], [7toE1,B], [7toE1,C], and
[E2to7] have Start and End Ports.

The convention to make reference to the Directionality of a Port is [#to#.Start] or [#to#.End]. For
instance, the plug that goes in the power outlet is described as [E2to7.Start] or the Video
connector from the Central Unit to the TV set is described as [7toE1,A.End] where it is plugged to
the TV. Note that this convention is simply an extension of the one used for Connectors.

3.2.3. ACCESS POINT – LOCATION

An Access Point will be denoted by indicating the Port it corresponds to:
[#to#,α.Directionality.AP]. For instance, the RCA connector receptacle in the TV set that receives
the video signal from the Central Unit is denoted as [7toE1,A.End.AP].

3.2.4. PLUG – LOCATION

A Plug will be denoted by indicating the Port it corresponds to: [#to#,α.Directionality.Pl]. For
instance, the RCA connector Plug in the Connector that delivers the video signal from the Central
Unit to the TV set is denoted as [7toE1,A.End.Pl].

3.3. IDENTIFICATION OF ALL CONNECTORS, PORTS AND TERMINALS

In file [Anex03_ConnectionsSummary] there are several tabs. Each one contains a different view
of the set of Connectors, Ports and Terminals. This file also shows how the different elements
relate to each other (i.e. how they are interconnected).

ANNEX 2
VBA Code Of Ontology Validation Tool

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 1

'**************************
'GLOBAL OPTIONS DECLARATION
'**************************

'Vars declarations is made explicit
Option Explicit

'****************************
'GLOBAL CONSTANTS DECLARATION
'****************************

Const MOD_MAXINSTANCES = 1000 'Determines de max number of distinct
instances to be processed
Const MOD_ANALIZER_TESTINSTCELL = "A2" 'Cell where the terminal to be
analyzed will be inserted
Const MOD_ANALIZER_CANDIDATES = "C2"

'Tab names
Const MOD_TAB_SRC_DATA = "01_Terminals"
Const MOD_TAB_ANALYZER = "02_Analyzer"
Const MOD_TAB_RULES = "03_Rules"
Const MOD_TAB_LISTS = "_Lists"

'Names names
Const MOD_NAME_INSTANCES = "slot_reference_name"
Const MOD_NAME_INSTANCESCLASS = "slot_reference_name_class"

'Ini rows
Const MOD_SRC_FIRSTROW = 2 'First row with actual data (after headings) in src tab
Const MOD_LISTS_FIRSTROW = 2
Const MOD_RULES_FIRSTROW = 2
Const MOD_ANALYZER_FIRSTROW = 6

'****************************
'GLOBAL VARIABLES DECLARATION
'****************************

'***********
'MAIN: START
'***********

'Macro key: Ctrl + Shift + A

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 2

Sub Main()

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False
 Const NMBR_OF_CHECKS = 5

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim longSrcRecords As Long
 Dim longTotInstances As Long
 Dim intStep As Integer ' This variable tells the macro in which part of the execution
next part should start
 Dim chrDataToDetermineStep(NMBR_OF_CHECKS) As String
 Dim bln_ExitFlag As Boolean

 Dim strTermSelected As String ' Terminal selected by usr in drop-down menu
 Dim longBegin As Long 'Row where the selected instance (by the usr) begins
 Dim longEnd As Long 'Row where the selected instance (by the usr) ends.
 Dim strTerClass As String 'Class the terminal selected by user belongs to

 Dim longParamsTotRows As Long 'Total number of params in tab
"MOD_TAB_ANALYZER" after the params have been read for a certain instance

 Dim longCount01 As Long
 Dim strRuleParamInstance As String 'Var to store the rule associated with a certain
parameter of an instance
 Dim strCurrentParamtoEval As String 'Stores temporarily the current param being eval

 Dim strPowerFlowDirection As String 'Var to store the direction power flow.

 '**************
 'LOCAL VARS INI
 '**************

 'the exit flag is initialized to False
 bln_ExitFlag = False

 longParamsTotRows = 0

 ' Var intStep is used to indicate the macro where to start each time it is run.
 ' To determine the value of intStep, a series of checks are performed.
 ' In general, if a certain cell is blank, is because the associated step has not yet
happened.

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 3

 'This array stores the values of the cells to be checked to determine the step.
 ' Check 1 -> Has data been imported to tab "MOD_TAB_SRC_DATA"? associated
cell is read here.
 Sheets(MOD_TAB_SRC_DATA).Select
 chrDataToDetermineStep(0) = Range("A1")
 'Check 2 -> Has the user selected a certain terminal to validate? associated cell is read
here.
 Sheets(MOD_TAB_ANALYZER).Select
 chrDataToDetermineStep(1) = Range("A2")
 'Check 3 -> Has the user selected a candidate compatible terminal after drop down 2
has been generated? associated cell is read here
 Sheets(MOD_TAB_ANALYZER).Select
 chrDataToDetermineStep(2) = Range("C2")

 'Now, each check will be evaluated to determine the step in which the macro has to
start
 'If no data exists in the tab where the src data should be imported, the step is = 0.
 If chrDataToDetermineStep(0) = "" Then

 Sheets(MOD_TAB_LISTS).Select
 Range("C2") = 0
 intStep = 0

 'Drop down menues are forced to be blank
 Sheets(MOD_TAB_ANALYZER).Select
 Range("A2") = ""
 Range("C2") = ""

 'If data exists in src tab, but the user has not selected a terminal to validate for
connection, then the step is = 1
 ElseIf chrDataToDetermineStep(1) = "" Then

 Sheets(MOD_TAB_LISTS).Select
 Range("C2") = 1
 intStep = 1

 'If data exists in src tab and the user has selected a teminal to validate for connection,
then the step is = 2
 ElseIf chrDataToDetermineStep(1) <> "" Then

 Sheets(MOD_TAB_LISTS).Select
 Range("C2") = 2
 intStep = 2

 End If

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 4

 'If data exists in src tab and the user has selected a terminal to validate for connection
and
 'the user has selected a candidate terminal to test, then the step is = 3
 If chrDataToDetermineStep(1) <> "" And chrDataToDetermineStep(2) <> "" Then

 Sheets(MOD_TAB_LISTS).Select
 Range("C2") = 3
 intStep = 3

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Main]" & Chr(13) & Chr(13) & _
 "Step 3 has been activated")

 End If
 'END DEBUG LINES

 End If

 '**********
 'SHEETS INI
 '**********

 'A clearing process is activated if the process is in step 0, 1 or 2
 If intStep = 0 Or intStep = 1 Or intStep = 2 Then

 'Certain target cells are cleared (before copying params for selected instance)
 Call Sub_CellsRangeClear(MOD_TAB_ANALYZER, "A4", "F100")
 Call Sub_CellsRangeClear(MOD_TAB_LISTS, "E2", "E100")

 'Lists (validations) are set to "any value" by default
 Sheets(MOD_TAB_ANALYZER).Select
 Range("A2").Select
 With Selection.Validation
 .Delete
 .Add Type:=xlValidateInputOnly, AlertStyle:=xlValidAlertStop, Operator _
 :=xlBetween
 End With
 Range("C2").Select
 With Selection.Validation
 .Delete
 .Add Type:=xlValidateInputOnly, AlertStyle:=xlValidAlertStop, Operator _
 :=xlBetween

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 5

 End With

 End If

 'Clearing process activated if process is in step 0, 1, 2 or 3
 If intStep = 0 Or intStep = 1 Or intStep = 2 Or intStep = 3 Then

 'Appropriate tab is selected
 Sheets(MOD_TAB_ANALYZER).Select

 'Default color (white) is applied to cells in the Analyzer tab
 Range("A6:F100").Select
 Selection.Interior.ColorIndex = 2 'White is applied

 End If

 '******************
 'CORE FUNCTIONALITY
 '******************

 '----------------
 'LOGIC FOR STEP 0
 '----------------

 'If no records exist in src tab, a warning is displayed to user
 If intStep = 0 Then

 MsgBox ("[Main]" & Chr(13) & Chr(13) & "No data was detected in tab '" &
MOD_TAB_SRC_DATA & "'." & Chr(13) _
 & "Please check." & Chr(13) & "The program will now end.")

 bln_ExitFlag = True

 'Cell A1 is selected for user convenience
 Range("A1").Select

 'Residual lists are cleared
 Call Sub_CellsRangeClear(MOD_TAB_LISTS, "A2", "A100")

 End If

 '----------------
 'LOGIC FOR STEP 1
 '----------------
 'In this step:

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 6

 '1) A list with the names of all terminals is created.
 '2) Using such list, a drop-down menu is created.

 If intStep = 1 And bln_ExitFlag = False Then

 'Cells are cleared - where the list will be populated
 Call Sub_CellsRangeClear(MOD_TAB_LISTS, "A" &
CStr(MOD_LISTS_FIRSTROW), "A" & CStr(MOD_MAXINSTANCES))

 'Total of records in src tab is calculated using the appropriate function
 longSrcRecords = Func_RecordsRelevantCount_Long(MOD_TAB_SRC_DATA,
MOD_SRC_FIRSTROW, "A")

 'Call sub that populates list of distinct instances
 Call Sub_ValueLookupCols(MOD_TAB_SRC_DATA, MOD_TAB_LISTS, "C",
"D", "Name", MOD_LISTS_FIRSTROW, "A", MOD_SRC_FIRSTROW,
longSrcRecords + MOD_SRC_FIRSTROW - 1)

 'Total of items in list of instances is counted
 longTotInstances = Func_RecordsRelevantCount_Long(MOD_TAB_LISTS,
MOD_LISTS_FIRSTROW, "A")

 'Name to define list to generate drop-menu created
 Sheets(MOD_TAB_LISTS).Select
 Range("A" & CStr(MOD_LISTS_FIRSTROW) & ":A" & CStr(longTotInstances +
MOD_LISTS_FIRSTROW - 1)).Select
 ActiveWorkbook.Names.Add Name:=MOD_NAME_INSTANCES,
RefersToR1C1:= _
 "=_Lists!R" & CStr(MOD_LISTS_FIRSTROW) & "C1:R" &
CStr(longTotInstances + MOD_LISTS_FIRSTROW - 1) & "C1"

 'Cell A1 is selected for usr convenience in the tab where the name was defined
 Range("A1").Select

 'Drop down list is inserted
 Sheets(MOD_TAB_ANALYZER).Select
 Range(MOD_ANALIZER_TESTINSTCELL).Select

 With Selection.Validation
 .Delete
 .Add Type:=xlValidateList, AlertStyle:=xlValidAlertStop, Operator:= _
 xlBetween, Formula1:="=" & MOD_NAME_INSTANCES
 .IgnoreBlank = True
 .InCellDropdown = True
 .InputTitle = ""
 .ErrorTitle = ""

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 7

 .InputMessage = ""
 .ErrorMessage = ""
 .ShowInput = True
 .ShowError = True
 End With

 End If

 '----------------
 'LOGIC FOR STEP 2
 '----------------
 'In this step:
 '1) User selects a terminal from the drop down menu.
 '2) Information about that terminal is displayed.
 '3) New drop down is generated.
 '4) User selects a candidate terminal to test.

 If intStep = 2 And bln_ExitFlag = False Then

 'Value selected by user in drop-down menu is stored
 Sheets(MOD_TAB_ANALYZER).Select
 strTermSelected = Range("A2")

 'The Begin row with info for the instance is retrieved
 longBegin = Func_InstanceBoundsRetrieve_Long(MOD_TAB_SRC_DATA,
strTermSelected, "BEGIN")

 'The End row with info for the instance is retrieved
 longEnd = Func_InstanceBoundsRetrieve_Long(MOD_TAB_SRC_DATA,
strTermSelected, "END")

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Main]" & Chr(13) & Chr(13) & "Slot Ref Name evaluated = " &
strTermSelected & _
 Chr(13) & "Begin Bound = " & longBegin & Chr(13) & "End bound = " &
longEnd)

 End If
 'END DEBUG LINES

 'Cells with params for selected instance are copied to the tab where the drop-down
menu is
 Call Sub_InstanceParamsCopy(MOD_TAB_SRC_DATA,
MOD_TAB_ANALYZER, "C" & CStr(longBegin), "D" & CStr(longEnd), "A6")

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 8

 'Class and Internal Instance Name are now copied
 Call Sub_InstanceParamsCopy(MOD_TAB_SRC_DATA,
MOD_TAB_ANALYZER, "A" & CStr(longBegin), "A" & CStr(longBegin), "B5")
 Call Sub_InstanceParamsCopy(MOD_TAB_SRC_DATA,
MOD_TAB_ANALYZER, "B" & CStr(longBegin), "B" & CStr(longBegin), "B4")

 'Labels are inserted for the class and internal instance name
 Sheets(MOD_TAB_ANALYZER).Select
 Range("A4") = "Class"
 Range("A5") = "Internal Instance Name"

 'Format is applied to these cells
 Range("A4:A5").Select
 With Selection.Interior
 .ColorIndex = 36
 .Pattern = xlSolid
 End With
 Range("B4:B5").Select
 With Selection.Interior
 .ColorIndex = 15
 .Pattern = xlSolid
 End With
 Columns("B:B").EntireColumn.AutoFit
 Range("A4:A5").Select
 Selection.Font.Bold = True
 Range("A6").Select

 'Now, a list will be created will all instances belonging to the same class as the
instance selected by the user.
 'This list will be created in the "MOD_TAB_LISTS" tab.
 'This sub-step is CLASS LEVEL validation.
 strTerClass = Range("B4")

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Main]" & Chr(13) & Chr(13) & _
 "Class name to look for = " & strTerClass)

 End If
 'END DEBUG LINES

 'Total of records in src tab is re-calculated using the appropriate function
 longSrcRecords = Func_RecordsRelevantCount_Long(MOD_TAB_SRC_DATA,
MOD_SRC_FIRSTROW, "A")

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 9

 'Sub that finds each instance belonging to the same class as the instance selected by
user is called
 Call Sub_ValueLookupColsRefined(MOD_TAB_SRC_DATA,
MOD_TAB_LISTS, "C", "B", "D", "Name", strTerClass, MOD_LISTS_FIRSTROW,
"E", MOD_SRC_FIRSTROW, longSrcRecords + MOD_SRC_FIRSTROW - 1)

 '--
 'DROP DOWN MENU 2 FOR INSTANCES OF THE SAME CLASS

 'Total of instances of selected class is counted
 longTotInstances = Func_RecordsRelevantCount_Long(MOD_TAB_LISTS,
MOD_LISTS_FIRSTROW, "E")

 'Name to define list to generate drop-menu 2 created
 Sheets(MOD_TAB_LISTS).Select
 Range("E" & CStr(MOD_LISTS_FIRSTROW) & ":E" & CStr(longTotInstances +
MOD_LISTS_FIRSTROW - 1)).Select
 ActiveWorkbook.Names.Add Name:=MOD_NAME_INSTANCESCLASS,
RefersToR1C1:= _
 "=_Lists!R" & CStr(MOD_LISTS_FIRSTROW) & "C5:R" &
CStr(longTotInstances + MOD_LISTS_FIRSTROW - 1) & "C5"

 'Cell A1 is selected for usr convenience in the tab where the name was defined
 Range("A1").Select

 'Drop down list is inserted
 Sheets(MOD_TAB_ANALYZER).Select
 Range(MOD_ANALIZER_CANDIDATES).Select

 With Selection.Validation
 .Delete
 .Add Type:=xlValidateList, AlertStyle:=xlValidAlertStop, Operator:= _
 xlBetween, Formula1:="=" & MOD_NAME_INSTANCESCLASS
 .IgnoreBlank = True
 .InCellDropdown = True
 .InputTitle = ""
 .ErrorTitle = ""
 .InputMessage = ""
 .ErrorMessage = ""
 .ShowInput = True
 .ShowError = True
 End With

 End If

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 10

 '----------------
 'LOGIC FOR STEP 3
 '----------------
 'In this step:
 '1) Parameters of candidate terminal are retrieved.
 '2) Parameters of candidate terminal are compared to the paramerters of base terminal
(Test Terminal)
 'to determine compatibility.

 If intStep = 3 And bln_ExitFlag = False Then

 'Value selected by user in drop-down menu is stored (cadidate terminal in this case)
 Sheets(MOD_TAB_ANALYZER).Select
 strTermSelected = Range("C2")

 'The Begin row with info for the instance is retrieved
 longBegin = Func_InstanceBoundsRetrieve_Long(MOD_TAB_SRC_DATA,
strTermSelected, "BEGIN")

 'The End row with info for the instance is retrieved
 longEnd = Func_InstanceBoundsRetrieve_Long(MOD_TAB_SRC_DATA,
strTermSelected, "END")

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Main]" & Chr(13) & Chr(13) & "Slot Ref Name evaluated
(Candidate) = " & strTermSelected & _
 Chr(13) & "Begin Bound = " & longBegin & Chr(13) & "End bound = " &
longEnd)

 End If
 'END DEBUG LINES

 'Cells with params for selected instance are copied to the tab where the drop-down
menu is
 Call Sub_InstanceParamsCopy(MOD_TAB_SRC_DATA,
MOD_TAB_ANALYZER, "D" & CStr(longBegin), "D" & CStr(longEnd), "C6")

 'Class and Internal Instance Name are now copied
 Call Sub_InstanceParamsCopy(MOD_TAB_SRC_DATA,
MOD_TAB_ANALYZER, "A" & CStr(longBegin), "A" & CStr(longBegin), "C5")
 Call Sub_InstanceParamsCopy(MOD_TAB_SRC_DATA,
MOD_TAB_ANALYZER, "B" & CStr(longBegin), "B" & CStr(longBegin), "C4")

 'Format is applied to these cells

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 11

 Sheets(MOD_TAB_ANALYZER).Select
 Range("C4:C5").Select
 With Selection.Interior
 .ColorIndex = 15
 .Pattern = xlSolid
 End With
 Columns("C:C").EntireColumn.AutoFit
 Range("A1").Select

 '--
 'RANGE OF CELLS (ROWS) OF TEST PARAMS IS DETERMINED

 longParamsTotRows =
Func_RecordsRelevantCount_Long(MOD_TAB_ANALYZER,
MOD_ANALYZER_FIRSTROW, "B")

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Main]" & Chr(13) & Chr(13) & _
 "Range of rows of params for analysis [Lower] = " &
MOD_ANALYZER_FIRSTROW & Chr(13) & _
 "Range of rows of params for analysis [Upper] = " &
CStr(longParamsTotRows + MOD_ANALYZER_FIRSTROW - 1))

 End If
 'END DEBUG LINES

 'END: RANGE OF CELLS (ROWS) OF TEST PARAMS IS DETERMINED
 '---

 'Direction of power flow is read
 Sheets(MOD_TAB_ANALYZER).Select
 strPowerFlowDirection = Range("B2")

 '--
 'LOOP TO EVALUATE EACH PARAMETER ACCORDING TO THE RULE
ASSOCIATED TO IT

 For longCount01 = MOD_ANALYZER_FIRSTROW To (longParamsTotRows +
MOD_ANALYZER_FIRSTROW - 1)

 'Appropriate tab is selected
 Sheets(MOD_TAB_ANALYZER).Select

 'Param to eval is read and stored

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 12

 strCurrentParamtoEval = Range("A" & CStr(longCount01))

 'Rule for parameter in loop is determined using the appropriate function
 strRuleParamInstance = Func_InstanceRuleRetrieve_String(MOD_TAB_RULES,
strCurrentParamtoEval, "A", "B")

 'Appropriate tab is selected
 Sheets(MOD_TAB_ANALYZER).Select

 'Rule is written in Analysis tab for ease of use
 Range("D" & CStr(longCount01)) = strRuleParamInstance

 'Param is evaluated for compatibility
 Call Sub_ParamValidate(MOD_TAB_ANALYZER, strPowerFlowDirection,
strRuleParamInstance, "B" & CStr(longCount01), "C" & CStr(longCount01), "E" &
CStr(longCount01))

 Next longCount01

 'END: LOOP TO EVALUATE EACH PARAMETER ACCORDING TO THE
RULE ASSOCIATED TO IT
 '---

 'Appropriate tab is selected
 Sheets(MOD_TAB_ANALYZER).Select

 'Headings and format are applied
 Range("D5:E5").Select
 With Selection.Interior
 .ColorIndex = 36
 .Pattern = xlSolid
 End With
 Columns("D:E").EntireColumn.AutoFit
 Range("D5:E5").Select
 Selection.Font.Bold = True

 Range("D5") = "Rules"
 Range("E5") = "Validation"

 Range("A1").Select

 End If

End Sub
'*********
'MAIN: END

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 13

'*********

'Purpose of sub: clears contents of a range of cells
'
'
'PARAMETERS:
'1) par_strTab -> Tab where cells to clean are located
'2) par_strCellIni -> Cell where the range starts
'3) par_strCellEnd -> cell where the range ends
'

Sub Sub_CellsRangeClear(par_strTab As String, par_strCellIni As String,
par_strCellEnd As String)

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************

 '**************
 'LOCAL VARS INI
 '**************

 '******************
 'CORE FUNCTIONALITY
 '******************
 Sheets(par_strTab).Select

 Range(par_strCellIni & ":" & par_strCellEnd).Select
 Selection.ClearContents

 'First cell is select for usr convenience
 Range("A1").Select

End Sub

'Purpose of sub: Copies parameters of an instance in a target tab and column
'
'
'PARAMETERS:
'1) par_strTabSrc -> Tab where cells to copy are located

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 14

'2) par_strTabTarget -> Destination tab where values will be copied
'3) par_strCellIni -> Cell where the range of values to be copied starts (upper left)
'4) par_strCellEnd -> cell where the range of values to be copied ends (bottom right)
'5) par_strCellTarget -> Upper left cell where the vlaues will be copied
'

Sub Sub_InstanceParamsCopy(par_strTabSrc As String, par_strTabTarget As String,
par_strCellIni As String, par_strCellEnd As String, par_strCellTarget As String)

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************

 '**************
 'LOCAL VARS INI
 '**************

 '******************
 'CORE FUNCTIONALITY
 '******************
 Sheets(par_strTabSrc).Select
 Range(par_strCellIni & ":" & par_strCellEnd).Select
 Selection.Copy
 Sheets(par_strTabTarget).Select
 Range(par_strCellTarget).Select
 ActiveSheet.Paste
 Range("A1").Select

 'Original tab is selected again
 Sheets(par_strTabSrc).Select
 Range("A1").Select

End Sub

'Purpose of sub: Determines if a certain attribute of a candidate instance is compatible
with the same attribute in the
'test instance (terminal). This sub considers the direction in which power flows.
'
'
'PARAMETERS:

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 15

'1) par_strTabSrc -> Tab where attributes to validate are located.
'2) par_strPowerFlow -> Direction of power flow. Values are ">>" or "<<" to be
interpreted as arrows (to right and to left)
'3) par_strRule -> Indicates the rule that applies to the attribute under eval. Valid values
are only those included in tab "_Lists".
'4) par_strCellAttribute01 -> Cell containint the attribute corresponding to the Test
terminal.
'5) par_strCellAttribute02 -> Cell containint the attribute corresponding to the Candidate
terminal.
'6) par_strCellEvalTarget -> Cell where the analysis result will be written.
'

Sub Sub_ParamValidate(par_strTabSrc As String, par_strPowerFlow As String,
par_strRule As String, par_strCellAttribute01 As String, par_strCellAttribute02 As
String, par_strCellEvalTarget As String)

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim intColorCodeMark 'var to store the color code
 Dim strValidationCode 'var to store message to usr showing result of validation

 '**************
 'LOCAL VARS INI
 '**************
 intColorCodeMark = 2 'By default the color code is set to white
 strValidationCode = "Not checked" 'By default is set to OK

 '******************
 'CORE FUNCTIONALITY
 '******************

 'Appropriate sheet is selected
 Sheets(par_strTabSrc).Select

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Parameters received:" & Chr(13) & _
 "Power flow direction = " & par_strPowerFlow & _

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 16

 "Rule received = " & par_strRule & _
 "Cell with param 1 = " & par_strCellAttribute01 & _
 "Cell with param 2 = " & par_strCellAttribute02 & _
 "Target cell to include user message = " & par_strCellEvalTarget)

 End If
 'END DEBUG LINES

 '--------------------
 'RULE 1 = "Exact Match"
 '--------
 'Power Flow direction = Irrelevant in this case
 '--------
 If par_strRule = "Exact match" Then

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Entered: Section for 'Exact match'")

 End If
 'END DEBUG LINES

 If Range(par_strCellAttribute01) = Range(par_strCellAttribute02) Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"
 strValidationCode = "OK"

 Else

 'Color code is set to red
 intColorCodeMark = 3

 'Validation code is set to "OK"
 strValidationCode = "<>"

 End If

 End If

 '--------------------
 'RULE 2 = "Complement"

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 17

 '--------
 'Power Flow direction = Irrelevant in this case
 '--------
 If par_strRule = "Complement" Then

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Entered: Section for 'Complement'")

 End If
 'END DEBUG LINES

 If Range(par_strCellAttribute01) = "Male" And Range(par_strCellAttribute02) =
"Female" Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"
 strValidationCode = "OK"

 ElseIf Range(par_strCellAttribute01) = "Female" And
Range(par_strCellAttribute02) = "Male" Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"
 strValidationCode = "OK"

 Else

 'Color code is set to red
 intColorCodeMark = 3

 'Validation code is set to "OK"
 strValidationCode = "="

 End If

 End If

 '--------------------
 'RULE 3A = "Upper Bound"

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 18

 '--------
 'Power Flow direction = ">>"
 '--------
 If par_strRule = "Upper bound" And par_strPowerFlow = ">>" Then

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Entered: Section for 'Upper bound' with flow '>>'")

 End If
 'END DEBUG LINES

 If Range(par_strCellAttribute01) <= Range(par_strCellAttribute02) Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"
 strValidationCode = "OK"

 Else

 'Color code is set to red
 intColorCodeMark = 3

 'Validation code is set to "OK"
 strValidationCode = ">"

 End If

 End If

 '--------------------
 'RULE 3B = "Upper Bound"
 '--------
 'Power Flow direction = "<<"
 '--------
 If par_strRule = "Upper bound" And par_strPowerFlow = "<<" Then

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Entered: Section for 'Upper bound' with flow '<<'")

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 19

 End If
 'END DEBUG LINES

 If Range(par_strCellAttribute01) >= Range(par_strCellAttribute02) Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"
 strValidationCode = "OK"

 Else

 'Color code is set to red
 intColorCodeMark = 3

 'Validation code is set to "OK"
 strValidationCode = "<"

 End If

 End If

 '--------------------
 'RULE 4A = "Lower Bound"
 '--------
 'Power Flow direction = ">>"
 '--------
 If par_strRule = "Lower bound" And par_strPowerFlow = ">>" Then

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Entered: Section for 'Lower bound' with flow '>>'")

 End If
 'END DEBUG LINES

 If Range(par_strCellAttribute01) >= Range(par_strCellAttribute02) Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 20

 strValidationCode = "OK"

 Else

 'Color code is set to red
 intColorCodeMark = 3

 'Validation code is set to "OK"
 strValidationCode = "<"

 End If

 End If

 '--------------------
 'RULE 4B = "Lower Bound"
 '--------
 'Power Flow direction = "<<"
 '--------
 If par_strRule = "Lower bound" And par_strPowerFlow = "<<" Then

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ParamValidate]" & Chr(13) & Chr(13) & _
 "Entered: Section for 'Lower bound' with flow '<<'")

 End If
 'END DEBUG LINES

 If Range(par_strCellAttribute01) <= Range(par_strCellAttribute02) Then

 'Color code is set to green
 intColorCodeMark = 35

 'Validation code is set to "OK"
 strValidationCode = "OK"

 Else

 'Color code is set to red
 intColorCodeMark = 3

 'Validation code is set to "OK"
 strValidationCode = ">"

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 21

 End If

 End If

 '---------------------------------
 'RESULTS OF ANALYSIS ARE DISPLAYED

 'Color is applied to evaluated cells (params-attributes)
 Range(par_strCellAttribute01 & ":" & par_strCellAttribute02).Select
 With Selection.Interior
 .ColorIndex = intColorCodeMark
 .Pattern = xlSolid
 End With

 'Color is applied to cell with validation results
 Range(par_strCellEvalTarget).Select
 With Selection.Interior
 .ColorIndex = intColorCodeMark
 .Pattern = xlSolid
 End With

 'Message to user is inserted in target cell
 Range(par_strCellEvalTarget) = strValidationCode

End Sub

'Purpose of sub: Identifies all distinct instances based on a lookup value in a list. Then,
each distinct instance is
'inserted into a target tab in Excel.
'
'
'PARAMETERS:
'1) par_strTabSrc -> Tab where the records to analyze are located
'2) par_strTabTarget -> Tab where analyzed values will be inserted
'3) par_strColLookup -> Column where the reference value to detect desired rows is
located
'4) par_strColLookupInstance -> Column where the value that corresponds to the lookup
value is located
'5) par_strLookupValue -> Value to find matches (lookup value)
'6) par_intTargetRow -> First row in target tab where matching values will be insterted
'7) par_strTargetCol -> First col in target tab where matching values will be insterted
'8) par_intSrcFirstRow -> First row with data in src tab
'9) par_longSrcLastRow -> Last row with data in src tab

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 22

Sub Sub_ValueLookupCols(par_strTabSrc As String, par_strTabTarget As String,
par_strColLookup As String, par_strColLookupInstance As String, par_strLookupValue
As String, par_intTargetRow As Integer, par_strTargetCol As String, par_intSrcFirstRow
As Integer, par_longSrcLastRow As Long)

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim strInstancesDistinct(MOD_MAXINSTANCES) As String ' Array that will
contain all the distinct instances found based on the look par.

 Dim longCount01 As Long
 Dim longCount02 As Long
 Dim longTotDistinct As Long

 '**************
 'LOCAL VARS INI
 '**************
 longCount02 = 0
 longTotDistinct = 0

 '******************
 'CORE FUNCTIONALITY
 '******************

 'Src tab is selected
 Sheets(par_strTabSrc).Select

 'The array with the distinct instances is populated
 For longCount01 = par_intSrcFirstRow To par_longSrcLastRow

 If Range(par_strColLookup & CStr(longCount01)) = par_strLookupValue Then

 strInstancesDistinct(longCount02) = Range(par_strColLookupInstance &
CStr(longCount01))

 longCount02 = longCount02 + 1
 longTotDistinct = longCount02 ' This stores the final number of distinct instances

 End If

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 23

 Next longCount01

 'The array with each of the distinct instances is written to the destination tab
 Sheets(par_strTabTarget).Select

 For longCount01 = 0 To longTotDistinct

 Range(par_strTargetCol & CStr(longCount01 + par_intTargetRow)) =
strInstancesDistinct(longCount01)

 Next longCount01

 'Autofit is applied to target col
 Columns(par_strTargetCol & ":" & par_strTargetCol).EntireColumn.AutoFit

 'First cell is select for usr convenience
 Range("A1").Select

End Sub

'Purpose of sub: Identifies all distinct instances based on a lookup value in a list. Then,
each distinct instance is
'inserted into a target tab in Excel. Additional to the lookup value, a reference parameter
has to match.
'
'PARAMETERS:
'1) par_strTabSrc -> Tab where the records to analyze are located
'2) par_strTabTarget -> Tab where analyzed values will be inserted
'3) par_strColLookup -> Column where the reference value to detect desired rows is
located
'4) par_strColRefParam -> Column where the reference parameter to filter rows is located
'5) par_strColLookupInstance -> Column where the value that corresponds to the lookup
value is located
'6) par_strLookupValue -> Value to find matches (lookup value)
'7) par_strRefParam -> Value to filter rows
'8) par_intTargetRow -> First row in target tab where matching values will be insterted
'9) par_strTargetCol -> First col in target tab where matching values will be insterted
'10) par_intSrcFirstRow -> First row with data in src tab
'11) par_longSrcLastRow -> Last row with data in src tab

Sub Sub_ValueLookupColsRefined(par_strTabSrc As String, par_strTabTarget As
String, par_strColLookup As String, par_strColRefParam As String,
par_strColLookupInstance As String, par_strLookupValue As String, par_strRefParam
As String, par_intTargetRow As Integer, par_strTargetCol As String, par_intSrcFirstRow
As Integer, par_longSrcLastRow As Long)

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 24

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim strInstancesDistinct(MOD_MAXINSTANCES) As String ' Array that will
contain all the distinct instances found based on the look par.

 Dim longCount01 As Long
 Dim longCount02 As Long
 Dim longTotDistinct As Long

 '**************
 'LOCAL VARS INI
 '**************
 longCount02 = 0
 longTotDistinct = 0

 '******************
 'CORE FUNCTIONALITY
 '******************

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ValueLookupColsRefined]" & Chr(13) & Chr(13) & _
 "Function has been called")

 End If
 'END DEBUG LINES

 'Src tab is selected
 Sheets(par_strTabSrc).Select

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ValueLookupColsRefined]" & Chr(13) & Chr(13) & _
 "Loop limits are:" & Chr(13) & _
 "Lower = " & par_intSrcFirstRow & Chr(13) & _
 "Upper = " & par_longSrcLastRow)

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 25

 End If
 'END DEBUG LINES

 'The array with the distinct instances is populated
 For longCount01 = par_intSrcFirstRow To par_longSrcLastRow

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Sub_ValueLookupColsRefined]" & Chr(13) & Chr(13) & _
 "Row = " & longCount01 & Chr(13) & _
 "Lookup value = " & par_strLookupValue & Chr(13) & _
 "Lookup under eval = " & Range(par_strColLookup & CStr(longCount01)) &
Chr(13) & _
 "Ref param value = " & par_strRefParam & Chr(13) & _
 "Ref param value eval = " & Range(par_strColRefParam &
CStr(longCount01)))

 End If
 'END DEBUG LINES

 If Range(par_strColLookup & CStr(longCount01)) = par_strLookupValue And
Range(par_strColRefParam & CStr(longCount01)) = par_strRefParam Then

 strInstancesDistinct(longCount02) = Range(par_strColLookupInstance &
CStr(longCount01))

 longCount02 = longCount02 + 1
 longTotDistinct = longCount02 ' This stores the final number of distinct instances

 End If

 Next longCount01

 'The array with each of the distinct instances is written to the destination tab
 Sheets(par_strTabTarget).Select

 For longCount01 = 0 To longTotDistinct

 Range(par_strTargetCol & CStr(longCount01 + par_intTargetRow)) =
strInstancesDistinct(longCount01)

 Next longCount01

 'Autofit is applied to target col

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 26

 Columns(par_strTargetCol & ":" & par_strTargetCol).EntireColumn.AutoFit

 'First cell is select for usr convenience
 Range("A1").Select

End Sub

'Purpose of Function: Identifies the row where the information of a certain instance
begins or the row where it ends, depending
'on the params received.
'
'
'PARAMETERS:
'1) par_strTab -> Tab where the bound will be searched.
'2) par_strInstanceSlotRefName -> Slot Reference Name of the instance to look for.
'3) par_strBoundDefine -> [BEGIN or END] to indicate if the function shall return the
upper or lower bound.
'
'RETURNS:
'1) Row where the upper or lower bound is located

Function Func_InstanceBoundsRetrieve_Long(par_strTab As String,
par_strInstanceSlotRefName As String, par_strBoundDefine As String) As Long

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim longCount01 As Long
 Dim longRefRow As Long 'Row where the Slot Reference Name is located
 Dim longBegin As Long 'Row where the instance rows begin
 Dim longEnd As Long 'Row where the instance rows end
 Dim longSrcRecords As Long

 Dim blnBeginFlag As Boolean 'Flag to indicate that the Begin bound has already been
found
 Dim blnEndFlag As Boolean 'Flag to indicate that the End bound has already been
found

 Dim strInstanceInternalName As String

 '**************

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 27

 'LOCAL VARS INI
 '**************
 longBegin = 0
 longEnd = 0

 blnBeginFlag = False
 blnEndFlag = False

 '******************
 'CORE FUNCTIONALITY
 '******************

 'Desired tab is selected
 Sheets(par_strTab).Select

 'Total number of records with relevant data is detected
 longSrcRecords = Func_RecordsRelevantCount_Long(par_strTab,
MOD_SRC_FIRSTROW, "A")
 longSrcRecords = longSrcRecords + MOD_SRC_FIRSTROW - 1

 'Row where the Slot Reference Name is, is identified
 longRefRow = Func_RecordRowPos_Long(par_strTab, par_strInstanceSlotRefName,
"D")

 'Instance (internal) name is identified using the row where the Slot Reference Name is
 strInstanceInternalName = Range("A" & CStr(longRefRow))

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceBoundsRetrieve_Long]" & Chr(13) & Chr(13) & _
 "Instance internal name = " & strInstanceInternalName)

 End If
 'END DEBUG LINES

 'Desired tab is selected again for safety
 Sheets(par_strTab).Select

 'loop to find the first occurrence of the "strInstanceInternalName"
 For longCount01 = 1 To longSrcRecords

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceBoundsRetrieve_Long]" & Chr(13) & Chr(13) & _

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 28

 "Value in cell [A" & longCount01 & "] = " & Range("A" &
CStr(longCount01)) & Chr(13) & _
 "Value in cell [A" & longCount01 + 1 & "] = " & Range("A" &
CStr(longCount01 + 1)) & Chr(13) & _
 "Instance Internal Name = " & strInstanceInternalName & Chr(13) & _
 Chr(13) & "blnBeginFlag = " & blnBeginFlag)

 End If
 'END DEBUG LINES

 'Begin bound is detected inside this If
 If Range("A" & CStr(longCount01)) = strInstanceInternalName And blnBeginFlag
= False Then

 ' When the first occurrence of the Internal Instance name is found, the row
number is stored
 longBegin = longCount01

 'The Begin bound flag is set to true
 blnBeginFlag = True

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceBoundsRetrieve_Long]" & Chr(13) & Chr(13) & _
 "Begin bound detected! Row = " & longBegin & Chr(13) & _
 "Value in cell [A" & longCount01 & "] = " & Range("A" &
CStr(longCount01)) & Chr(13) & _
 "Value in cell [A" & longCount01 + 1 & "] = " & Range("A" &
CStr(longCount01 + 1)) & Chr(13) & _
 "Instance Internal Name = " & strInstanceInternalName & Chr(13) & _
 Chr(13) & "blnBeginFlag after detection = " & blnBeginFlag)

 End If
 'END DEBUG LINES

 End If

 'End bound is detected inside this If
 If Range("A" & CStr(longCount01)) = strInstanceInternalName And Range("A" &
CStr(longCount01 + 1)) <> strInstanceInternalName And blnEndFlag = False Then

 'Row of last occurrence of the Internal Instance name is stored
 longEnd = longCount01

 'The End bound flag is set to true

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 29

 blnEndFlag = True

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceBoundsRetrieve_Long]" & Chr(13) & Chr(13) & _
 "End bound detected! Row = " & longEnd & Chr(13) & _
 "Value in cell [A" & longCount01 & "] = " & Range("A" &
CStr(longCount01)) & Chr(13) & _
 "Value in cell [A" & longCount01 + 1 & "] = " & Range("A" &
CStr(longCount01 + 1)) & Chr(13) & _
 "Instance Internal Name = " & strInstanceInternalName & Chr(13) & _
 Chr(13) & "blnEndFlag after detection = " & blnEndFlag)

 End If
 'END DEBUG LINES

 'Exit condition is forced
 longCount01 = longSrcRecords - 1

 End If

 Next longCount01

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceBoundsRetrieve_Long]" & Chr(13) & Chr(13) & _
 "Values to return are: " & Chr(13) & _
 "Begin bound = " & longBegin & Chr(13) & _
 "End bound = " & longEnd)

 End If
 'END DEBUG LINES

 'The upper or lower bound is returned depending on the paramter received
 If par_strBoundDefine = "BEGIN" Then

 Func_InstanceBoundsRetrieve_Long = longBegin

 ElseIf par_strBoundDefine = "END" Then

 Func_InstanceBoundsRetrieve_Long = longEnd

 End If

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 30

End Function

'Purpose of Function: Goes to the tab where the rules for the attributes of a terminal are
defined and retrieves the rule for a certain
'attribute received as a lookup paramater.'
'
'PARAMETERS:
'1) par_strTabRules -> Tab where the list of rules is.
'2) par_strParamName -> Name of the attribute of the terminal to look for.
'3) par_strLookupCol -> Column where the lookup value is supossed to be in the Rules
tab.
'4) par_strRuleCol -> Column where the rules are.
'
'RETURNS:
'1) The rule words (e.g. "Exact match" or "Upper Bound")

Function Func_InstanceRuleRetrieve_String(par_strTabRules As String,
par_strParamName As String, par_strLookupCol As String, par_strRuleCol As String)
As String

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim longCount01 As Long
 Dim LongTotRows As Long
 Dim strRule As String

 '**************
 'LOCAL VARS INI
 '**************
 LongTotRows = 0

 '******************
 'CORE FUNCTIONALITY
 '******************

 'Total number of rows in Rules tab is retrieved

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 31

 LongTotRows = Func_RecordsRelevantCount_Long(par_strTabRules,
MOD_RULES_FIRSTROW, "A")

 'loop to search for desired value
 For longCount01 = MOD_RULES_FIRSTROW To (LongTotRows +
MOD_RULES_FIRSTROW - 1)

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceRuleRetrieve_String]" & Chr(13) & Chr(13) & _
 "Rules tab received = " & par_strTabRules & Chr(13) & _
 "Last row with relevant data = " & CStr(LongTotRows +
MOD_RULES_FIRSTROW - 1) & Chr(13) & _
 "Attribute to look for = " & par_strParamName & Chr(13) & _
 "Current rule attribute in Rules tab = " & Range(par_strLookupCol &
CStr(longCount01)) & Chr(13) & _
 "Type of rule (current) = " & Range(par_strRuleCol & CStr(longCount01)))

 End If
 'END DEBUG LINES

 If Range(par_strLookupCol & CStr(longCount01)) = par_strParamName Then

 strRule = Range(par_strRuleCol & CStr(longCount01))

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceRuleRetrieve_String]" & Chr(13) & Chr(13) & _
 "Match found!" & Chr(13) & _
 "Attribute to look for = " & par_strParamName & Chr(13) & _
 "Current rule attribute in Rules tab = " & Range(par_strLookupCol &
CStr(longCount01)) & Chr(13) & _
 "Type of rule (Value to be returned) = " & Range(par_strRuleCol &
CStr(longCount01)))

 End If
 'END DEBUG LINES

 'Exit condition is set
 longCount01 = (LongTotRows + MOD_RULES_FIRSTROW - 1)

 End If

 Next longCount01

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 32

 'DEBUG LINES
 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_InstanceRuleRetrieve_String]" & Chr(13) & Chr(13) & _
 "Return value = " & strRule)

 End If
 'END DEBUG LINES

 'Resulting value is returned
 Func_InstanceRuleRetrieve_String = strRule

End Function

'Purpose of Function: Finds a value in a certain column and returns the row where it is
located.
'
'
'PARAMETERS:
'1) par_strTab -> Tab where the value will be searched.
'2) par_strValueLookFor -> Value to look for.
'3) par_strColumn -> Column where the value will be searched.
'
'RETURNS:
'1) Row where the upper or lower bound is located. If the value is not found, the function
will return 0.

Function Func_RecordRowPos_Long(par_strTab As String, par_strValueLookFor As
String, par_strColumn As String) As Long

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '**********************
 'LOCAL VARS DECLARATION
 '**********************
 Dim longCount01
 Dim longSrcRecords
 Dim longPosRow

 '**************

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 33

 'LOCAL VARS INI
 '**************
 longPosRow = 0

 '******************
 'CORE FUNCTIONALITY
 '******************

 'Desired tab is selected
 Sheets(par_strTab).Select

 'Total number of records with relevant data is detected
 longSrcRecords = Func_RecordsRelevantCount_Long(par_strTab,
MOD_SRC_FIRSTROW, "A")
 longSrcRecords = longSrcRecords + MOD_SRC_FIRSTROW - 1

 'Loop to find desired record
 For longCount01 = 1 To longSrcRecords

 If Range(par_strColumn & CStr(longCount01)) = par_strValueLookFor Then

 longPosRow = longCount01

 'Exit condition from the For loop
 longCount01 = longSrcRecords

 End If

 Next longCount01

 If longPosRow = 0 Then

 MsgBox ("[Func_RecordRowPos_Long]" & Chr(13) & Chr(13) & "Value in
parameter not found in specified column.")

 End If

 'DEBUG LINES

 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_RecordRowPos_Long]" & Chr(13) & Chr(13) & "Record = " &
par_strValueLookFor & _
 "was found in" & Chr(13) & "Row = " & longPosRow)

 End If

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 34

 'END DEBUG LINES

 'Resulting value is returned
 Func_RecordRowPos_Long = longPosRow

End Function

'Sub author: fgallo
'
'Purpose of function: This sub-function returns the number of records AFTER the
original intFirstRow value provided as a
'parameter. This is, if intFirstRow = 10 and there are 15 valid records after that row (i.e.
row 25 in Excel), then this
'function will return 15, NOT 25. If no records are detected, this function will return 0.
'
'This function assumes that a blank cell marks the end of valid rows.
'
'PARAMETERS:
'1) par_strTab -> Tab where records out of date range will be deleted
'2) par_intFirstRow -> First row where date range evaluation will start. This MUST be
the first row where actual data is supposed to exist.
'3) par_strColEval -> Column where the data will be evaluated
'
'RETURNS
'1) Number of relevant records AS LONG

Function Func_RecordsRelevantCount_Long(par_strTab As String, par_intFirstRow As
Integer, par_strColEval As String) As Long

 '***************************
 'LOCAL CONSTANTS DECLARATION
 '***************************
 Const FLAG_DEBUG_SHOW = False

 '***************************
 'LOCAL VARIABLES DECLARATION
 '***************************
 Dim longCount01 As Long
 Dim longTotRelevantRows As Long

 '*******************
 'LOCAL VARIABLES INI
 '*******************

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex02_VBACodeOfOntologyValidationTool_v.0.1.doc

Author: Francisco Gallo

 35

 longCount01 = par_intFirstRow

 '******************
 'CORE FUNCTIONALITY
 '******************

 'Appropriate tab is selected
 Sheets(par_strTab).Select

 'Loop that will determine the number of rows with data
 Do While IsEmpty(Range(par_strColEval & CStr(longCount01))) = False

 longCount01 = longCount01 + 1

 Loop

 'The number of records is adjusted by substracting the starting row
 longTotRelevantRows = longCount01 - par_intFirstRow

 'Test lines

 If FLAG_DEBUG_SHOW Then

 MsgBox ("[Func_RecordsRelevantCount_Long] - return value" & Chr(13) &
Chr(13) & "Relevant records detected = " & longTotRelevantRows)

 End If

 'End test lines

 'Resulting value is returned
 Func_RecordsRelevantCount_Long = longTotRelevantRows

End Function

ANNEX 3
List of References

Ref Number Ref description
1 Mayank, Vimal; Kositsyna, Natalya; and Austin, Mark– “Ontology-Enabled Validation

 of System-Level Architectures”; Institute for Systems Research, University of Maryland, College Park
2 Liang, Vei-Chung; and Paredis, Christiaan J.J. – “A Port Ontology For Automated Model Composition”;

Institute for Complex Engineered Systems, Carnegie Mellon University
3 Liang, Vei-Chung; and Paredis, Christiaan J.J. – “A Port Ontology For Conceptual Design of Systems”;

Journal of Computing and Information Science in Engineering - Sep/2004, Vol 4, Pgs: 206-217
4 Austin, Mark; “Introduction to Systems Engineering – Information Centric Systems Engineering”; Institute

for Systems Research, University of Maryland, College Park

ANNEX 4
Protégé XML Schema Analysis

Tree

Level001 Level002 Level003 Comments Level001 Comments Level002 Comments Level003
class name
class type
class own_slot_value slot_reference
class own_slot_value value
class superclass The string here links the

[class]
to its superclass (which is
also a
[class]) by means of the
[class].[name].

class template_slot The string here links the
[class] to each of the
[slots] associated to it by
means of the
[slot].[name].

class template_facet_value slot_reference
class template_facet_value facet_reference
class template_facet_value value
slot name
slot type
slot own_slot_value slot_reference
slot own_slot_value value
simple_instance name
simple_instance type
simple_instance own_slot_value slot_reference
simple_instance own_slot_value value

ANNEX 5
Steps To Export/Import XML

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex05_StepsToExportImportXML_v.0.1.doc

Author: Francisco Gallo

 1

1. Export the data from Protégé using the option “convert project to format”
from the “File” menu.

2. Rename the resulting XML file to “PortOntology_Target-Classes.xml”.
Open this file with a text editor.

3. By default, Protégé will use a certain schema. This schema is defined below:

<knowledge_base
 xmlns="http://protege.stanford.edu/xml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://protege.stanford.edu/xml
http://protege.stanford.edu/xml/schema/protege.xsd">

This schema reference should be the 2nd element in the XML file:

Replace it with the line:

<knowledge_base xmlns:od="urn:schemas-microsoft-com:officedata">

This changes the reference to a schema that Excel and IE can work with.

4. After the first line (?xml version=”1.0”), insert a line that reads:

<?xml-stylesheet type="text/xsl" href="_PortOntology_Classes.xsl"?>

Then the file at this time should look like:

UNIVERSITY OF MARYLAND – COLLEGE PARK
ENPM643 – Term Project – Document: Annex05_StepsToExportImportXML_v.0.1.doc

Author: Francisco Gallo

 2

5. Now this file is referencing the appropriate stylesheet
“_PortOntology_Classes.xsl”.

6. Now you can import the XML file to Excel or you can open it with IE.
7. Repeat this process for the Instances and the Slots.

