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Project Description.  
Our project in ENPM 641 focused on a ski resort chairlift as a system, with 
human actors as riders, operators, and ski patrol.  The design optimized the lift 
for speed, efficiency, cost, etc while maintaining safety.  The project, 
however, focused mainly on the functionality of a single lift. 
 
In ENPM 642, the design expands to optimize a small ski resort containing 
multiple chairlifts.  The objective is to equally disperse skiers and riders 
around the resort, on both the Runs and lifts to prevent crowding and lengthy 
lift lines.  Each Run is categorized under a specified difficulty level and each 
lift operates at a constant speed and capacity.  Riders are assumed to move at 



a certain rate down the mountain depending on the difficulty level of the Run.  
The design is determined through analysis of flow what type and how many lifts 
best optimize the mountain. 
 
The optimization of the ski resort layout is expanded further in ENPM 643 
through the use of full and fractional factorial design.  The input parameters of 
each layout are observed to determine which parameter is most sensitive to 
the system response.  For an existing mountain with a predetermined layout of 
lifts, a ski resort planner weighs the cost effectiveness of lifts with varying 
speed, number of seats per chair, and length to make each run.  Rather than 
performing all possible experiments, this model provides a quick and accurate 
estimate to show which parameter has the greatest effect on increasing the lift 
and run capacity, which reduces the number of people waiting in the lift lines. 
 

What is Factorial Design? 

A full factorial design measures the system response of every possible 
combination of input variables and levels.  These responses are analyzed to 
provide information about every main effect and interaction effect.  Main 
effects of one independent variable are averaged across the levels of the other 
independent variables, revealing the sensitivity of the system response to each 
variable.  The sensitivity of the interactions can also be calculated with a full 
factorial design.  The interaction effects show how one independent variable 
depends upon the level of the other independent variables.  A full factorial 
design is practical when few input variables are investigated.  Testing all 
combinations of levels becomes too expensive and time-consuming with many 
variables.   

When many variables are investigated, fractional factorial designs are useful to 
produce nearly the same result as full factorial designs, but with fewer 
experiments.  The ASQC (1983) Glossary & Tables for Statistical Quality Control 
defines fractional factorial design in the following way: "A factorial experiment 
in which only an adequately chosen fraction of the treatment combinations 
required for the complete factorial experiment is selected to be run" (10).  All 
fractional factorial designs should be balanced and orthogonal to obtain the 
most accurate results because it eliminates correlation between the estimates 
of the main effects and interactions.  Any suitably chosen fractional factorial 
design has columns that are all pair-wise orthogonal and sum to zero.    

Application of Factorial Design.  

When planning the layout of a ski resort, the optimal design for maximizing lift 
and run capacity is not obvious without a method of weighing different input 
variables.   It is easy to come up with a system that simply gets people to the 



top of a mountain and allows them to ski down, but it can be difficult to verify 
that it is done in the most efficient manner.  By using factorial design, we are 
able to see how the parameters of the ski resort layout affect the overall 
capacity of the resort.  The larger the capacity of a resort, the greater 
population it can accommodate.  The information produced from this process is 
helpful in making decisions based on cost.  When given multiple designs for a 
particular mountain, factorial design can help the resort planner budget money 
to maximize lift and run capacity while minimizing cost.  For example, if high 
speed double lifts are less expensive than regular speed quad lifts, the planner 
may opt to implement a smaller chair size with a high-speed chairlift motor.   

Requirements and Assumptions.  

The main objective in optimizing a ski resort is to minimize the time waiting to 
board a lift.  The model used to determine wait time has seven input variables: 
chair size, chair spacing, lift speed, lift length, difficulty of run, length of run, 
and resort population.  In order to minimize wait time, lift and run capacity 
must be maximized.  Of the seven variables, resort population has no effect on 
lift or run capacity, chair spacing is generally constant among all types of lifts, 
lifts generally stretch from the base to the summit, and difficulty of a run, 
which determines the average speed down a run, is a result of the pitch of its 
location on the mountain.  The remaining three variables (chair size, lift speed, 
and length of run) were selected as controllable design parameters for a given 
mountain.  Testing these three variables in a factorial design allows the resort 
planner to maximize total lift and run capacity, which will minimize the wait 
time for a given population, chair spacing, difficulty of run(s), and lift length.   

System Models and Experiments. 

 1 Lift, 1 Run (full factorial design) 
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Graphical representation of three variable (23) full factorial design 

Model used for calculation of yield for “Test 1” in the three variable (23) full 
factorial design 

The model above shows the total slope and lift capacity for the minimum value 
of each of three input parameters, labeled below as chair size, lift speed, and 
run length.  The slope and lift capacity shown in red above is copied into the 
main effects calculation below for test 1.  The input parameters are varied 
according to the chart below, where “1” represents the maximum value and “-
1” represents the minimum value of each variable.  The slope and lift capacity 
is recorded as the yield for each test. 



 

Main effects of three variable (23) full factorial design 

The next step is to determine the main effects and two and three factor 
interactions for each input variable.  Each “1” and “-1” is multiplied by its 
corresponding yield and the resulting values are summed for each variable.  
The average of positive values in each column is subtracted from the average 
of negative values in each column to produce the main effects and 
interactions.   The main effects are shown in bold.  The farther away from zero 
of each main effect, the greater effect the variable has on system response.  In 
the design above, variable 1 (chair size) is farther from zero than variables 2 
and 3, so the total lift and run capacity is most sensitive to chair size.  The full 
factorial design shows the effect based on the interaction of the variables.  The 
interactions of variables in the design above do not have as great effect on the 
system as the individual variables. 

 1 Lift, 1 Run (1/2 fractional factorial design) 



 

Graphical representation of three variable (23-1) fractional factorial design 
 

The graphical representation of the half fractional factorial design for the same 
ski resort layout is shown above.  Only half the tests are required, but the tests 
are selected to make the design balanced and orthogonal, as shown graphically 
in yellow. 

 



 

Main effects of three variable (23-1) fractional factorial design 

Although the fractional factorial design requires only half the tests, the 
calculations of main effects are performed the same way.  The “1” and “-1” 
values for the third variable are simply the product of the first and second 
variables making the design orthogonal.  Therefore the two and three factor 
interactions cannot be calculated using the fractional factorial design.  The 
yield for each test is determined from the same model as the full factorial 
design.     

 1 Lift, 2 Runs 
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Four variable (24-1) fractional factorial design 
 

The addition of one more run to the model establishes a fourth variable.  
Instead of calculating all sixteen tests, only the eight shown in yellow were 
required for the one-half fractional factorial design.  Again, the tests were 
specifically selected to make the design balanced and orthogonal.   

 



 
 

Main effects of four variable (24-1) fractional factorial design 
 

The main effect of the fourth variable is calculated the same as the other 
three, which were calculated the same as in the previous example. 

 2 Lifts Converging, 2 Runs 



 

 
 

Six variable (26-2) fractional factorial design 
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As the number of variables increases, the number of fractional factorial tests 
selected can remain minimal as long as the design is balanced and orthogonal.  
The ¼ fractional factorial tests are shown in yellow.  Each of the eight cubes 
shown is positioned at the vertices of one larger cube.  Cubes in the back plane 
have darker shading. 

 



 
 



Main effects of six variable (26-2) fractional factorial design 
 

The column of “1” and “-1” values for variables 5 and 6 of the one-fourth 
fractional factorial design are carefully chosen products of other variables to 
make the design balanced and orthogonal. 

 2 Lifts in Parallel, 2 Runs 
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Main effects of eight variable (28-4) fractional factorial design 

The graphical representation of an eight variable factorial design would have 
32 cubes with 256 total vertices in the formation of a much larger set of cubes.  
The full factorial design of this magnitude would be cumbersome to compute.  
The one-eighth fractional factorial design requires only sixteen tests.  This 
reduces experimentation time, yet still produces a reasonably accurate 
determination of the system sensitivity. 

Summary of Results. 

 

Comparison of main effects for each ski resort layout 

Four ski resort layouts were chosen to study the system response of 
independent input variables.  Each factorial design includes two input variables 
for each lift and one for each run, so the factorial design is more complex as 
the number of input variables increases and the resort grows.  The numbers in 
circles on the geometric representation are lift and run capacities associated 
with specific test conditions.  The main effects for each variable represent the 
average change of the system response due to a change in the variable.   
 
For a resort with one lift and one run, the simplest model, the system response 
for the three input variables is calculated in two separate designs for 
comparison.  The first uses a full factorial design, which is more accurate than 
a fractional factorial design, but shows nearly the same results.  The conclusion 
is the same for both designs, indicating chair size is far more sensitive than lift 
speed, which is slightly more sensitive than run length. 
 
When a second run is added to the layout, the model becomes slightly more 
complex by adding a fourth variable for the length of the second run.  Since 
the results of the fractional factorial design for the previous model produce 
nearly the same results as the full factorial, a one-half fractional factorial 
design was chosen again.  A full factorial design would produce sixteen rows, or 
require sixteen experiments, whereas the fractional design only requires eight.  



The results are the same after adding a second run, in that chair size is more 
sensitive than speed of the lift, which is more sensitive than the length of each 
run. 
 
Six variables are introduced in the model with two lifts converging and two 
runs.  A 26 full factorial requires 64 experiments, so a ¼ fractional factorial is 
chosen requiring only sixteen experiments.  Again the order of sensitivity of 
each variable is equal to the previous models, with the number of seats per 
chair having the greatest impact on system response. 
 
When testing a layout with two lifts and four runs, eight variables affect the 
system response.  Since 28 equals 256 experiments, a full factorial is extremely 
complex to calculate by hand.  Therefore a 1/8 fractional factorial design is 
selected with only sixteen experiments.  Chair size is again the most sensitive 
variable, followed by lift speed, and length of the run, which has very minimal 
effect in comparison to the other variables.   

Conclusions. 

When designing a ski resort on a given mountain, the length of each lift is 
usually predetermined to be as long as possible and the type of each slope is 
dependent on its desired location.  In addition, the spacing between chairs is 
usually set at sixty feet and the resort population is desirably as large as 
possible.  Therefore, chair sizes, lift speeds, and run lengths remain as 
independent input variables.  These variables are evaluated with cost to 
maximize the lift and run capacity for the lowest possible cost.  Our results 
show that for the four ski resort layouts tested, the number of seats on each 
chair is the most sensitive variable for increasing lift and run capacity.  If there 
is a choice between a high-speed double lift and a regular quad lift, the regular 
quad lift would yield a greater lift and run capacity.  Chair size is significantly 
more sensitive than the speed of the lifts, which is also significantly more 
sensitive than the length of each run.  The cost of implementing each variable 
is not taken into account, even though it is often the most influential factor in 
business decisions.  The sensitivity of variables determined in each design can 
be factored with the cost of implementation to determine the most efficient 
way to design a ski resort. 
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