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ABSTRACT

Miniature robots present a number of challenging problems in controls, as they often exhibit nonlinear dynamics
and have strict power and size constraints. These constraints limit the sensing and processing capabilities
drastically. Many control techniques require knowledge of the robot’s position, so the position must be estimated
when it cannot be sensed directly. We report a mixed signal odometry circuit that maps motor commands
to estimated and predicted changes in position in Euclidean space (x, y, θ). We compare the mixed-signal
implementation with other approaches and find that the mixed-signal implementation offers significant reductions
in power consumption at an acceptable loss of precision.
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Figure 1. Left: Miniature robot platform. AAA battery shown for reference. Right: mobile robot’s state space (x, y, θ)
and control space (υ, ω).

1. INTRODUCTION

Advances in sensing, actuation and battery technology have allowed for the development of very small robots
(sub-cm3).1–3 Autonomous operation generally requires local modeling of system dynamics, since many control
strategies require knowledge of the system state and direct realtime sensing of position is not always possible
due to size and power constraints. Further, Model Predictive Control techniques such as Randomized Receding
Horizon Control require many predictions of the robot’s future state (104 − 105 predictions to be done in faster
than real time) before executing a given command sequence.4 On-board computation for small platforms is
limited by available micro-controllers, which are relatively large, power-hungry, and slow. To alleviate this
challenge we propose a mixed-signal architecture implementing an odometry function that maps motor commands
to estimated changes in position using a kinematic model. The architecture is designed to support control of a
differential-drive miniature robot such as the one shown in Fig. 1.

1.1 Simulation of System Dynamics

The inputs to the kinematic model are assumed to be the left and right motor commands, uL and uR, or the linear
and angular control variables, υ and ω. Assuming a kinematic drive-train model, these are linearly related as
[ υ
ω ] = [ c1 c2

c3 c4 ] [ uL
uR

]. The outputs of the kinematic model are the coordinates (x, y, θ) from the nonlinear equations
of motion (1).
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Figure 2. System-level design of analog robot kinematics simulator highlighting signal flow and primary computational
blocks.
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Alternatively, closed form solutions of (1) can be implemented directly for piecewise constant (υ, ω) (2):xk+1

yk+1

θk+1

 =

 υk

ωk
(sin θk+1 − sin θk) + xk

υk

ωk
(cos θk − cos θk+1) + yk

ωk(tk+1 − tk) + θk

 (2)

In Section 2 we describe the system architecture and its main components, and in Section 3 we describe the
results of system level simulations. Section 4 summarizes the work.

2. SYSTEM OVERVIEW

We describe an odometry circuit that solves (1) directly rather than compute (2). This approach requires fewer
operations and thus fewer circuit stages to model the nonlinear system dynamics: 4 signal scaling elements, two
summing nodes, three integrators, two trigonometric function blocks and two signal multipliers (see Fig. 2).
Inputs may be presented to the system as either motor commands uL(t) and uR(t) or control variables υ and
ω. For a physical interpretation of these control variables, refer to Fig. 1 First, ω is integrated to provide an
estimate of the angle θ, then the sine and cosine of the angle are computed. Next the product of cos(θ) and the
linear velocity υ is integrated to find the position x, and the product of sin(θ) and υ is integrated to find the
position y.

2.1 Integration of θ and State Calibration

Integration of ω produces an estimate of the angle θ. This is accomplished using differential current-mode
signals by sourcing the positive component of the signal onto a node with capacitance Cθ, and sinking the
negative component away from the same node. This results in ∆Iω = Iω+(t)− Iω−(t) and Vθ(t) = 1

Cθ

∫
∆Iωdt.

It is also of great importance to calibrate circuit timing, slew rates, and reference angles from robot state
trajectories X (in real time) to circuit voltage signals V and differential current signals ∆I (in faster than real
time). The linear calibration map can be generated from the properties in (3):

Cal : (twor, X, Ẋ) ↔ (tcir, VX , V̇X) (3)
twor = τtcir time warping

dVα(tcir)
dtcir

|SRα,max|
=

dα(twor)
dtwor

|α̇max|
calibration of slew rates to state differentials

θ(tcir) =
dVθ(tcir)

dtcir

4π

Vmax − Vmin
Vθ angle calibration for trigonometric circuits (linear phase)
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Figure 3. System-level design of integration and state control circuit.

where α ∈ {x, y, θ}, and X = (x, y, θ). We also assume that |SRα,max| = |∆Iα,max|
Cα

and that (υ, ω) are piecewise
constant. To calculate the mapping between states X and VX , the key is to integrate both sides of the slew rate
calibration equation in (3) with respect to the same time reference frame. Care must be taken to use the other
calibration substitutions.

The capacitor size and current range set the time scale. For current mode signals with amplitudes between
1nA and 100nA, the dimensionless time scale constant τ defines how many seconds of world time are simulated in
one second of the circuit’s operation. In this implementation, the maximum rotation rate was set to |∆Iω,max| =
100nA ↔ |ωmax| = 2π rad

s .

By looking at the definition of Vθ, it is possible to relate θ(twor), the estimation of the robot’s angle in the
physical world, to Vθ(tcir). One can use (3) to establish the linear relationship mapping modeled system states
to circuit states (4) (ignoring initial conditions):

Vθ(tcir) =
|∆Iω,max|
Cθ|ωmax|

θ(tworld)
τ

(4)

Notice that (4) is dimensionally self-consistent. Increasing τ reduces C and thus the chip area required for the
capacitor. For this design, we assigned τ = 105 and designed C ≈ 0.1pF-1pF. Slew rate measurements estimate
the node capacitances to be Cθ = 2pF, Cx = 0.4pF and Cy = 0.4pF.

2.2 Circuit Implementation of the Modulus Circuit

State Desired mapping θ′ 7→ θ sine cosine
S = 0 θ = θ′ sin θ = sin θ′ cos θ = cos θ′

S = 1 θ = 2π − θ′ sin θ = − sin θ′ cos θ = cos θ′

Table 1. States of operation for θ′ 7→ θ

We define the trigonometric shaping circuits over two periods in order to avoid problems associated with
discontinuities at the boundaries. We defined two states of operation as summarized in Table 1. The integration
and state machine circuits are shown in Fig. 3. In state S=0, both switches (controlled by state) flip to the left
and ∆Iω is sourced to capacitor Cθ. Here we assume that the robot can only rotate in one direction. Therefore,
∆Iω is always greater than or equal to zero and Vθ is monotonically increasing and decreasing in state S=0 and
S=1 respectively. In state S=1, both switches flip to the right and ∆Iω is drained from capacitor Cθ. In this
state, a mapping is required to compute the correct θ; this mapping is accomplished by flipping the differential
output of the sine shaping circuit (see Table 1). However, the switching of state causes undesired coupling and
drift which we will discuss in section 3.2.



The state machine works as follows. The integrated voltage Vθ is compared to two thresholds using compara-
tors. When Vθ crosses a threshold (Vmin or Vmax, which correspond to ±2π), the output of the corresponding
comparator rises high. This rising signal is fed into a pulse generating circuit, converting the rising signal into
a pulse. The rising edge of the pulse toggles the state control circuit and changes the state as shown in the
example waveforms of Fig. 3.

2.3 Sine Shaping Circuit

A sine shaping circuit maps a (DC) voltage to its sine, i.e. Vθ 7→ sin(Vθ). Series expansion using hyperbolic
tangents5 offers the capability to define a valid approximation over an arbitrary range. We use the hyperbolic
transfer function (5) of MOSFET differential pairs operating in weak inversion:

∆Iout = IB tanh
[

κ

2UT
(Vθ − Vref )

]
(5)

to implement this circuit. Connecting five differential pairs in parallel (see Fig. 4) extends the validity of the
sine approximation over ±2π. Self-cascoded current mirrors produce the tail currents in the differential pairs.
The circuit design is based on a previously reported implementation6 with the following modifications: first,
differential pair biasing was achieved by a resistor network instead of changing the well potential of the PMOS
transistors; second, source degeneration was introduced in the differential pairs in order to extend the linear
range. We model source degeneration as a reduction in κ of the source-coupled transistors:

SD: κ 7→ κ2

1 + κ
(6)

This approximation is valid in the range of Vsg = 1V − 2.25V, and outside that range κ is attenuated even
further.

The sine shaping circuit characteristics are modeled by (7):

∆Iout =
i=2∑

i=−2

(−1)iIB tanh(λ(Vθ − Vrefi)) ≈ sinVθ (7)

where λ = SD(κ)
2UT

= κ2

2UT (κ+1) and Vrefi
= {1, 1.5, 2, 2.5, 3}. In Fig. 4 this characteristic is compared with

simulation results using a BSIM3.3 model in PSPICE. The large signal model had an accuracy error of 5% and
an RMS error of 3%. The sine and cosine fitting error (i.e. the accuracy of the approximation), are around 8%
and 5% respectively. These errors can be reduced further by circuit parameter tuning, and improving the circuit
model to account for deterministic variations due to Early effect and κ’s sensitivity to changes in Vsg.

2.4 Cosine shaping circuit

Three design modifications to the sine shaping circuit are needed to create a cosine shaping circuit. The trigono-
metric identity − sin(θ − π

2 ) = cos θ suggests using a phase shift in the reference voltages, plus flipping the
differential pair current outputs to account for the negative sign. However, this also shifts the operating range
of the approximation to [−2π − π

2 , 2π − π
2 ]. An additional differential pair must be added to ensure that the

circuit functions over the interval [−2π, 2π]. Adding this additional differential pair adds an additional current
source or sink, shifting the current output when sin Vθ = 0 to IB . An additional constant current sink is needed
to shift this zero-level current output.

2.5 Multiplier Circuit

The multiplier is implemented using a four quadrant translinear Gilbert cell7 with differential current-mode
signal inputs and outputs. Accuracy is degraded by non-ideal current mirrors, each at a different operating
point. These nonlinearities were suppressed by using long transistors to reduce the Early effect and by using
self-cascoded current mirrors to increase the output resistance.
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Figure 4. Top, sine shaping circuit comprising five differential pairs. Bottom, comparison of the analytical model with
simulation. Blue is the large signal model (MATLAB), green is the PSPICE simulation, and the black dotted lines are
the individual differential pair current outputs.

2.6 Digital Application-Specific Integrated Circuit (ASIC)
In order to perform comprehensive comparisons between different types of implementations, we also designed a
digital ASIC which computes the closed form odometry solutions in (2). The number of bits for inputs, outputs,
and internal nodes were chosen based on the requirements of dynamic range and precision for this application;
υ, ω, x, y, and θ are 8, 8, 12, 12, and 8 bits respectively. The sine and cosine functions are generated using
a lookup table which contains only the sine values from 0 to π

2 (65 elements in this case). The cosine values
and other sine values are calculated by exploiting the symmetry of these functions. Since the requirement for
operation time is not strict here, folding technique was applied to reduce area and hopefully the leakage power.
As a result, the computations in (2) can be carried out in two clock cycles with only one multiplier. The design
was implemented in Verilog HDL. Synthesis was done by Cadence Encounter RTL Compiler using 0.5 µm 2P3M
technology. The reported area is 0.70 mm2 and the highest speed is 61.8 MHz. These values could be improved if
the system had access to read-only memory (ROM) to implement the lookup table instead of using combinational
logic circuits.

3. SIMULATED SYSTEM PERFORMANCE

3.1 Circuit Power
We can break down the power consumption of the analog circuit for each circuit component. We compare this
with the power required to compute (2) using a digital microcontroller and a custom designed digital ASIC.
We assume that computations are implemented on a microcontroller comparable to the TI MSP430 with a
hardware multiplier. (2) requires 11 multiplications, 1 division, and 12 additions using Taylor series expansion.
We assume that each operation takes five clock cycles ignoring memory access costs. The energy required to
perform the computation is independent of the clock, but assuming 100µA/MHz, VDD = 3V and a 32 MHz
clock, the equations of motion can be solved in 0.1µs consuming about 35nJ of power.

3.2 Error metrics
It is of practical interest to compare the circuit performance to the closed form solutions (2). However, commonly
used error metrics such as mean squared error are sensitive to small changes in signal frequency or phase, even



Component N elements current
draw per
element
[A]

Gilbert multiplier7 2 1u, 1.4u
sine shaper6 1 1u

cosine shaper6 1 1.2u
Integrator and state control 1 ≈ 18u

signal Integrator 2 ≈ 0.4u
Total 23u

Power at 5V 0.1mW
Table 2. Circuit static current draw for each circuit component.

Implementation Design Setting Energy per operation (nJ)
Mixed Signal τ = 104 11.5

τ = 105 1.15
τ = 106 0.12

Digital ASIC Clk = 1 MHz 5.4
Clk = 1 MHz 15

µController Power: 100 µA
MHz 35 (est.)

Table 3. Power comparison between different implementations and design settings.

if the signals are “qualitatively” similar. We propose a means to account for this by first, estimating relevant
signal parameters using a numerical optimization routine. Second, a parameter normalization transform “locks”
the expected signal’s and the simulated signal’s estimated amplitude, phase, and drift. In other words, we wish
to develop a parameter-invariant error metric, then account for the parameter errors separately. The resulting
error metrics in Table 4 have a physical interpretation and suggest sources of error in the circuit design.

Consider signals of the following form:

x(s, C) = C1 sin(C2s + C3) + C4s + C5 (8)

where x is a continuous function, and s ∈ R. Continuous solutions from (2) given control signals (υ, ω) calibrated
into the circuit space can be equated to the form of (8) to calculate C for the ideal analog computer signal output.

We will also consider discrete time sampled signals from the PSPICE simulation to be of the following form:

x̂(t̂, K) = K1 sin(K2t̂ + K3) + K4t̂ + K5 + ε(t̂) (9)

We will denote sampled signals as (t, x), where t, x ∈ RN , and N is the number of sample points. t is not
necessarily uniformly sampled as is the case with PSPICE simulations. The ideal sampled signal is (t, x), while
(t̂, x̂) is the result of the PSPICE simulation.

(t, ε(t)) represents the residual from fitting (fitting error). We used the Nelder-Mead simplex (direct search)
method to minimize the Euclidean norm of the residual when estimating K for (9). Initial conditions for K
were chosen using some heuristics but were easily approximated by observing the signal. Parameters were also
prescaled to improve fitting.

Error analysis comprises comparing the expected signal parameters C and the estimated parameters K
from the PSPICE simulation results, and calculating the root mean squared residual error. The parameter
normalization transform T can be represented by a sequence of 4 linear transforms (on a suitably defined vector



space). These transforms are not necessarily commutative:

T : (t̂, x̂, x(·, C)) 7→ (t̂, xT , x̂T ) (10)
x̂T = x̂−K4t̂−K5 remove drift and bias from x̂

t =
K2

C2
t̂− C3 −K3

C2
phase shift cancellation

xT = x(t, C)− C4t− C5 evaluate x at the phase compensated points

x̂T 7→ C1

K1
x̂T amplitude normalization

This transform also preserves the residual such that(t̂, ε(t̂)) = (t̂, xT − x̂T ). Once the signals have been
transformed, they can be plotted to show both phase information and the residual to provide insight into the
source of the error.

Period offset
2π

K2
− 2π

C2

amplitude scaling
K1

C1
drift K4 (assume C4 = 0)

residual error RMSE(t, ε(t))
Table 4. Error metrics

Period offset was chosen over frequency offset due to the nature of the modulus circuit. Undesired quantities
of charge (from leakage or “impulse” quantities from circuit resets) accumulate on the integrating capacitor Vθ

and reflect a linear shift in period, but a nonlinear shift in frequency. Observe that since f = 1
T , for sufficiently

small changes in period: d
dT f = − 1

f2 . Amplitude scaling can result from mismatch in current mirrors, and
variations in capacitance on the integrating nodes. Changing the integrator’s capacitance changes the slew rate,
providing an additional source of amplitude scaling. In addition, drift results from undesired currents being
injected onto the integrating capacitor on Vx or Vy.

Finally, using the rectangle rule for numerical integration:

RMSE(t, ε(t)) =

√√√√ 1
tN − t1

N∑
i=1

(ε(ti)∆ti)2 (11)

captures any nonlinear circuit module deviations from the ideal transfer functions. Phase offsets (C3 vs. K3),
and DC offsets (C5 vs. K5) were not controlled parameters during testing and have been ignored in the analysis.

3.3 Mixed-Signal Simulation Results

In Fig. 5, we simulate results when ω = 0 and υ is constant to show that x increases linearly with time. In this
case, ∆Iυ = 0 nA and ∆Iυ ∈ [2, 4, 6, 8, 10] nA.

For the more general cases of input control variables, we performed simulations for the following combinations
of υ and ω, where ∆Iω ∈ [20, 40, 60, 80, 100] nA and ∆Iυ ∈ [2, 4, 6, 8, 10] nA. In Fig. 6 and 7, families of graphs of
Vx(t) and Vy(t) with constant ω are the same color. These families are also shifted with a DC offset to improve
visibility. There is a current mismatch occurring in the circuit which results in an undesired drift of the signals.
Note that as predicted by (2), the frequency of the circuit scales linearly with ω and the amplitude of the sinusoid
is proportional to υ

ω .

The following results are for Vx, but are similar to those for Vy (Vy’s drift is notably different). Fig. 8
demonstrate how the parameter invariant transform (10) matches ideal waveforms to simulation results. The
residual (t, ε(t)) is also apparent.

Figures 9 and 10 highlight the relationships between choice of (∆Iυ,∆Iω) to the error metrics defined in 4.
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4. CONCLUSION

The mixed-signal odometry circuit satisfies the strict design requirements of a miniature mobile robot. Detailed
analysis of the dynamics simulator suggests that an analog or mixed-signal implementation can dramatically
reduce power consumption at an acceptable loss in precision.
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