
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Managing Problem-Solving Iterations in
Product Development

Jeffrey W. Herrmann

Abstract—Problem-solving is a useful way to view product

development. In many cases, design teams iterate through a
generate-test cycle until a successful design is found. The time
required to find a successful design is influenced by the testing
strategy. In particular, the amount of time spent generating a
solution affects the probability of passing the test. This paper
introduces a novel model of the generate-test cycle, develops
results from the model, and presents useful insights that can be
used to make better decisions about managing problem-solving
iterations.

Index Terms—Research and Development Management,
Product Development, Decision-making, Design Methodology.

I. INTRODUCTION

PRODUCT development processes involve a great variety
of activities and can be viewed from many perspectives.

Moreover, there is much diversity among product
development projects even within one firm, as some projects
involve quite routine redesign of a well-understood product
and others require inventing completely new designs for a
new market opportunity.

Problem-solving is one useful way to view product
development [1], and, from this perspective, a product
development project is a set of nested problem-solving cycles.
Each problem-solving cycle searches for design alternatives,
builds models of these, run experiments, and analyzes the
result [2]. If the results are satisfactory, the cycle ends with a
solution. Otherwise, the cycle must repeat.

The literature on managing product development has often
looked at the problem of using testing and reviews to uncover
problems that are introduced by design activities. For
instance, if there is a certain amount of design work must be
done, but this design work introduces random flaws, then
management needs to schedule reviews to find the flaws
quickly, since the penalty for a design flaw is a delay needed
to repeat the work that was done since the flaw occurred [3].
The rework introduces no new flaws, but reviews take time, so
too many reviews delay the project as well. In the case of
sequential testing, [4] develop a policy for minimizing the

total cost of testing and redesign under the assumption that the
number of problems grows as the project approaches
completion. Such models are more appropriate for a routine
design process that has a well-understood amount of work to
do and flaws that are straightforward to fix.

Manuscript received July 7, 2005. This material is based on work

supported by the National Science Foundation under grant number 0225863.
Dr. Jeffrey W. Herrmann is with the Department of Mechanical

Engineering and Institute for Systems Research, University of Maryland,
College Park, MD 20742 USA (phone: 301-405-5433; fax: 301-314-9477;
e-mail: jwh2@umd.edu).

However, in many cases, the amount of design activity
needed is not known in advance. Instead, there are
performance requirements (which may be hard to translate
into engineering specifications), and the task that is assigned
to the design engineer (or product development team) is to
find a design that meets these requirements. This more
closely matches the problem-solving perspective. Like the
problem-solving cycles mentioned earlier, this type of task
(repeated at different levels and for different portions of the
product) can occur many times in a product development
project.

For example, we studied the product development process
of a firm that was developing a product for children with
disabilities. A child plays with the product in certain ways
designed to help the child learn new skills. The interface
involves voice recognition and sensors for detecting the
child’s gestures and body movements, to which the product
reacts appropriately. At a certain stage in the development of
the product, the firm arranged testing sessions when children
could play with a prototype of the product and the firm could
determine if the design was satisfactory. (Note that it was not
possible, ahead of time, to specify precisely what a
satisfactory design should do.) After a testing session, the
firm redesigned the product and then arranged another test,
though they were never sure that the test would be successful
since they could not test the product in the lab. The firm
continued these tests until they had a product that passed. The
design activities needed to reach this point were not possible
to predict ahead of time, since the firm had never done
anything like this before. The design activities were moving
the design towards the desired state, not introducing problems.

This type of iteration has been described as the “generate-
test” cycle [5]. There is a chance that the results of a cycle
will be unsatisfactory, but that likelihood depends upon the
amount of effort spent in the generate stage of the cycle. This
raises the following question: how much effort should be spent
in each generate-test cycle? The answer affects the
probability of finding a satisfactory solution during that cycle
and thus the number of cycles needed until a satisfactory
solution is found. This, in turn, affects the total time needed
to solve this problem.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This problem is most relevant to situations where an
explicit testing step is needed and managerial judgment is
needed to determine when the design should be tested. This
occurs in situations like the one described above, when the
manager or customer cannot describe a satisfactory design but
instead says “I know it when I see it.” It also occurs when
there is no substitute for sophisticated tests like crash tests,
explosive tests, environmental stress tests, and similar
activities. For example, the design of a protective shield for a
workstation that processes explosive material must undergo a
destructive test to verify that it can protect the operator in case
of a mishap. Such a test requires a great deal of effort to
create a prototype, setup the test equipment, perform the test,
and analyze the results.

The significance of this question is increasing as new
technologies (including simulation, computer-aided
engineering analysis, and rapid prototyping) become available
and product development organizations modify their product
development processes to take advantage of these tools. The
benefits of rapid experimentation have been well documented
[6-8]. However, no single approach can be optimal for all
product development processes. Managers need insight and
models for making good decisions about how to change their
testing strategies.

The problem is minimized if the requirements can be
explicitly stated and possible solutions can be quickly,
inexpensively, and accurately checked against them.
However, two possible obstacles can occur.

First, the design team may have limited ability to check a
possible solution during the generate stage, especially if they
depend upon models to estimate design performance (e.g.,
deflection of a beam, circuit board reliability, machining time,
or vehicle maneuverability). These models, based on
scientific theory, experimental results, and experience, may be
inaccurate or imprecise. Thus, the actual performance of a
design will vary from the predicted, and a design that should
be adequate will fail during testing.

Second, this type of requirements satisfaction is contrary to
the desire to optimize performance that is deeply ingrained in
engineering. For instance, a study of Volvo engineers
responsible for the final development of new engines revealed
that some engineers believed their job was to make the engine
meet performance specifications, others thought that they
needed to resolve tradeoffs between performance categories,
and a third set wanted to make the engine provide the
customer with a good driving experience [9]. Design
engineers who want to optimize performance are never “done”
with a design; there are always additional features that can be
added.

This paper presents a simple model that focuses on
minimizing the expected time needed to complete a design
task that iterates through a generate-test cycle until the design
passes. The purpose of this analysis is to gain insight into this
fundamental phenomenon that will help managers control
their product development processes. A key feature of the
model is that the probability of passing the test is a function of

the time spent in the generate stage, which is an independent
variable.

Unlike the models described above, the model presented in
this paper is more appropriate for innovative design processes
that involve creativity and more technical risks. In the face of
complexity or an inaccessible environment that makes
learning ineffective, project managers may take a selectionist
approach [10]. In this domain, a design team may choose to
try multiple concepts, either in parallel or in sequence. The
model presented in this paper can be used to describe this
sequential strategy by considering each iteration as a separate
attempt to reach the design requirements. A test can confirm
that the team has found a satisfactory solution, so having a test
quickly is a chance to complete the project as soon as that
happens.

This article proceeds as follows. We start with a brief
discussion of iteration. Section III then presents the model of
the generate-test cycle. Section IV discusses the special case
where each iteration is the same because there is no learning.
Section V analyzes the general case, in which learning can
occur from iteration to iteration. Section VI describes a policy
that can be used when multiple design teams need to use the
same test resource. We conclude the paper with a discussion
of the insights gained from these models.

II. ITERATION
The iteration caused by the generate-test cycle is not the only
type of iteration in product development. Three types of
iteration have been identified [11]. Design iteration occurs
when the same design activity is done again on the same part
of the product, but at a different level of abstraction.
Behavioral iteration occurs when the same design activity at
the same level of abstraction is done again on another portion
of the product. The iteration caused by generate-test cycles is
rework iteration, because the same design activity at the same
level of abstraction is done again on the same portion of the
product. An example of a generate-test cycle is the design of
the Ariane 5 rocket. Unfortunately, the rocket failed at launch
(the ultimate test), and the rocket had to be redesigned.

The diverse causes of iteration have inspired many
approaches to minimize its impact. A complete review is
beyond the scope of this paper, but a few examples will be
mentioned. Iteration can be caused by the decomposition that
occurs in product design [12]. Determining the value of some
design variables early in the process limits the freedom of
design variables that are set later. This can lead to situations
in which no solution is feasible or to solutions that perform
poorly. The properties of sequence invariance and task
invariance can be used to improve the design process. When
there are many coupled design tasks that require information
to be interchanged, performing each task requires the other
tasks to be repeated. In this case, a work transformation
matrix model can determine which tasks require the most
effort [13].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

III. THE BASIC MODEL
In this model of the generate-test cycle, the probability that

a design will pass the test increases as the generate stage
continues. This occurs because the design team works on the
design more, finding better solutions, discovering more
relevant information, double-checking their analysis, and
allowing new issues to appear so that the team can resolve
them before the test.

Another key feature of this model is that the test takes time.
The particular activities necessary for a test depend upon the
type of test, but they may include constructing a prototype,
planning, obtaining approvals, conducting the test, analyzing
the results, documenting the results, preparing presentation
materials, and holding a review or meeting to discuss the
results.

This situation presents an important question for
management, who must decide how long the design team
should spend in the generate stage that precedes the test. The
key performance measure is the time until a successful design
is found. This time is a random variable, and there can be a
tension between minimizing its expected value and
minimizing its variance, as we will see.

The design team designs the product during the generate
stage and then proceeds to a test that determines whether the
product at that point is satisfactory. If so, the design activity
is done. If not, the design team must redesign the product
(repeat the generate stage) and return to the test. The design
team must repeat this loop until the product passes the test.
Each passage through this loop is an iteration.

Let r denote the time needed to conduct a test (this is
given). Let ti denote the time spent in the generate stage
during the i-th iteration. This decision variable must be
determined at the beginning of the iteration. Let pi(ti) be the
probability of passing the test in the i-th iteration, which
depends upon the time spent in the generate stage. Intuitively,
it is reasonable that pi(ti) is an increasing function that
approaches 1 in the limit.

We assume that, if the product fails the test and the design
team has to conduct another iteration, the probability of
success must return to zero at the beginning of the generate
stage (since the existing design is known to be bad). Now, if
the test provides information from which the design team can
learn, then pi(ti) may be different.

If there is no learning from iteration to iteration, then we
can assume that all of the pi(ti) have the same form. Let this

function be p(t). We can also use this model as an
approximation to the more complex case.

Generate
Stage Test

Fail

Pass

Fig. 1. The generate-test cycle model. The design team iterates through this
cycle until their design passes the test.

One possible form for p(t) is

() 1 ,at 0p t e for t−= − > (1)

However, other forms may be appropriate.

IV. NO LEARNING: IDENTICAL ITERATIONS

A. Minimizing Expected Total Time
We first consider the case of minimizing the expected total

time. In this case, it is easy to show that the design team
should spend the same amount of time in the generate stage
each iteration. Given that the design team must perform the
generate stage, finding a successful design does not depend
upon how many iterations the design team has performed
previously. That is, there is a memoryless property. The
expected time needed to find a successful design is
independent of what has happened before. Thus, the policy
should remain the same each time.

For a specific value of t, which determines p(t), the number
of iterations needed is a random variable that has a geometric
distribution. The expected number of iterations (including the
successful one at the end) is 1/p(t).

The total time needed to find a successful design is t + r
times the number of iterations. Thus, T(t) = (t + r)/p(t) is the
expected total time. The shape of this curve depends upon the
shape of p(t). Given a test time r, minimizing the expected
total time requires choosing the optimal time t* for the
generate stage. Choosing t too small leads to a large number
of iterations, while choosing t too large leads to long stages.

If p(t) = 1 – e-at, T(t) is a convex function that has a single
optimal solution at the point t* that satisfies eat* - at* = ar +
1. Fig. 2 shows the shape of T(t) for different values of r in
this case.

The test time r has a significant impact on the optimal
solution in this case. As r approaches 0, t* and T(t*) approach
0. As r increases, t* increases and T(t*) increases. In some
sense, the generate stage t is similar to a batch size that is used
to avoid setups (in this case, tests). Instead of worrying only
about the optimal batch size (in this case, t*), it also makes
sense to reduce the setup cost (the test time r), which allows
smaller batches (quicker tests) and improves the overall
performance. This result, which matches our intuition and
others’ observations [6-8], provides evidence of the model’s
validity.

If the design is a more routine project where the design
team can generate a design that will certainly pass the test, we
should consider a different function for the probability of test
success. Suppose that there is a bound G on the time needed
for the generate stage and the probability of test success
equals 1 if the generate stage is this long. Moreover, the
probability of test success is a linear function of t: p(t) = t/G.
Then, the expected total time T(t) = (t + r)/p(t) = (t + r)G/t =
G (1 + r/t), which reaches its minimum at time t* = G,
independent of the test time r. The optimal expected total

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

time is T(t*) = G + r, and there is no uncertainty about the
value (since p(G) = 1). This shows that iteration is not helpful
in this type of design scenario.

Risk aversion also affects the optimal policy, as the next
section discusses.

B. A Risk-averse Manager
Managers are notoriously risk averse. A risk averse

manager worries more about the variability of project duration
than the expected duration. If there is a deadline, the risk-
averse manager is most concerned about maximizing the
probability that a successful design will be found by the
deadline. (Ideally, this probability will equal one.)

Let D be the given deadline for the design to pass the test.
The manager must decide on the maximum number of
iterations to do and the time to spend in each iteration’s
generate stage. If the team gets to the last iteration, it is easy
to show that the amount of time spent in that generate stage
should be just enough to allow time for one last test before the
deadline.

For example, suppose the deadline is 90 days from now, and
the test takes 5 days. Then, the design team could perform
one iteration, spending 85 days in the generate stage. Or the
design team could spend 45 days in the generate stage in the
first iteration. The first test ends 50 days from now. If the
design fails the first test, the design team will have 40 days
remaining, so they can spend 35 days in the generate stage in
the second iteration. Or they could spend 60 days in the
generate stage in the first iteration and 20 days in the generate
stage in the second iteration. Or they may plan for three, four,
or more iterations.

Let m be the number of planned iterations. Let ti be the
amount of time spent in the generate stage of the i-th iteration.
The time for the i-th iteration is ti + r. Therefore, to allow
time for the m tests, the sum t1 + … + tm must equal D - mr.

Let qi be the probability of a successful test by the end of
the i-th iteration. Then, q1 = p(t1). For i > 1, qi = qi-1 + (1 -
 qi-1) p(ti).

Let Pm be the maximum probability of success when the
design team plans to have m iterations.

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

Tim e per ite ra tio n

Ex
pe

ct
ed

 to
ta

l t
im

e

40
20
5

Fig. 2. Graph of expected total time versus time per iteration for different values of test time. In this case, iterations occur without learning, and the probability
time curve has an exponential form. The three curves correspond to different values of test time: 5, 20, and 40 time units. These curves show that, as the test
time increases, the optimal time per iteration increases, and the minimum expected total time increases.

Pm = max {qm: t + … + tm = D - mr} 1
If p(t) = 1 – e-at, it is easy to show that, for a given m, qm =

1 – e-a(D-mr) for any feasible t1, …, tm.
Thus, Pm = 1 – e-a(D-mr). This is maximized when m = 1,

so the design team should plan one iteration.
If p(t) = t/G and G > D - r, then note that 1 – Pm equals min

{1 - qm: ti + … + tm = D - mr}. 1 - qm is the probability of
failing all m iterations, which can be expressed as follows:

11 1 1 m
m

ttq
G G

 − = − −

 (2)

This reaches its minimum when all of the ti except one are
equal to 0. The non-zero ti equals D - mr. Thus, 1 - Pm = 1-
(D - mr)/G, so Pm = (D - mr)/G. As in the previous case, this
is maximized when m = 1, so the design team should plan one
iteration.

If p(t) = t/G and G ≤ D - r, then it is clear that the design
team can spend G time units in the generate stage of the first
iteration and certainly pass the test on the first try.

V. ITERATION WITH LEARNING
When there is learning from iteration to iteration, the

function pi(ti) is different each iteration. Because the general
case is intractable, we consider the case where the function
pi(ti) converges to a function p(t) after m iterations. That is,
pi(ti) = p(t) for i > m.

Let Ri be the expected remaining time needed to pass the
test at the beginning of the i-th iteration.

() 11 ()i i i i iR t r p t R+= + + − (3)
Based on the results for the case with no learning, we know

that, if the design team fails on the first m iterations, then, for
the subsequent iterations, they should choose t to minimize
Rm+1 = (t + r)/p(t). Then, we can find the optimal tm, tm-1,
..., t1 by minimizing Rm, Rm-1, ..., R1 using (3).

Consider, as an example, a situation with the following
probability functions:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

p1(t) = 1 – e-t
p2(t) = 1 – e-2t
pi(t) = 1 – e-4t for i > 2.

If r = 5 time units, the design team can minimize R3 by
choosing t = 0.796 time units (for all iterations after the
second), which yields R3 = 6.046 time units. Then, to
minimize R2, t2 should be 1.246 time units, which yields
R2 = 6.746 time units. Then, to minimize R1, t1 should be
1.909 time units, which yields R1 = 7.909 time units.

VI. MULTIPLE PROBLEMS AND A SINGLE TEST RESOURCE
The above results indicate how much time a design team

should spend in the generate stage before performing a test to
determine if they have solved their problem. This analysis
assumed that the design team’s activities are independent of
any other design teams. However, in practice, an organization
may have limited testing resources. For instance, there may
be a single facility that can perform an explosive test. For a
given testing resource, there will be multiple design teams
working to solve problems that require that testing resource.
Then, there may exist queueing for the testing resource. If
design teams test too often, that increases the queueing and
the time for all teams to solve their problems. Ideally, the
numerous design teams that require the testing resource
should find a joint policy that is best for everyone [14].
However, such coordination, even if tractable, may be
difficult to implement.

To simplify the situation, consider the expected number of
tests that each problem requires to be solved. This affects the
utilization of the testing resource. Maintaining a reasonable
utilization is an important management objective.

Consider now a specific class of problems that requires a
specific testing resource. Let λ be the rate (in problems per
time unit) at which new problems in this class arrive. As
before, r is the time needed to perform a test. We assume that
λr < 1 so that the testing resource has enough capacity to
perform at least one test for each problem. Let n be the
expected number of tests that each problem will require before
it is solved. The utilization u of the testing resource equals
λrn. Since u must be less than one, this provides an upper
bound on n. The system will be stable if and only if
n < 1/(λr). Moreover, if management wants to limit
utilization to at most U (where U ≥ λr) then the expected
number of tests must be no greater than U/(λr). This rule
provides a simple way to coordinate problem-solving. Each
design team must choose a policy that yields an expected
number of tests less than U/(λr).

If there is no learning, then n = 1/p(t), and the design team
must choose t large enough so that p(t) > λr/U.

If there is learning, then we can use the following procedure
to calculate the expected number of tests based on t1, ..., tm,
and t for the remaining iterations.

Let Ni be the expected number of remaining tests including
the one in the i-th iteration. n = N1.

() 11 1 ()i i iN p t += + − iN (4)
If the design team fails the first m iterations, then, for the

subsequent iterations, they will spend t time units in the

generate stage of each subsequent iteration. Thus, Nm+1 =
1/p(t). Then, we can find the remaining Nm, Nm-1, ..., N1.
The design team should set t1, ..., tm, and t so that N1 ≤
U/(λr).

Consider again the example presented above. If the design
team follows a policy with t1 = 1.909 time units, t2 = 1.126
time units, and t = 0.796 time units, the expected number of
remaining tests at each iteration can be calculated as follows:
N3 = 1.043. N2 = 1.086. N1 = 1.161.

VII. CONCLUSION
This paper presents a deliberately simple model of product

development and focuses on the generate-test cycle in order to
obtain some useful insights into the issue of controlling
product development processes. In particular, to minimize the
expected time needed to solve a design problem, the optimal
strategy depends upon the nature of the relationship between
the time spent developing a solution and the probability of test
success. Performing more iterations can reduce the expected
total time to solve a problem in some cases. Also, reducing
the time needed to perform a test has a significant impact on
the expected duration. Not only is there less test time per
iteration, reducing the test time makes shorter generate stages
(more frequent iteration) desirable.

When the design problem is routine, then iteration does not
reduce the expected total time. The team should finish the
generate stage to get a design that will certainly pass.
Reducing the time needed to perform a test has less impact on
the expected duration in this case.

Iterations do add variability to the time needed to find a
successful design. In a creative design process, a risk-averse
manager who wishes to meet a deadline should avoid
iteration, since it does not increase the probability of meeting
the deadline. Also, reducing the time needed to perform a test
has a significant impact on this probability, since it means
more time to perform the design stage.

If there is a shared test resource that many design teams
need to use to solve problems, then design teams should
follow policies that bound the expected number of tests that a
team will perform. Such a strategy ensures reasonable
utilization of the shared test resource. Our model provides
guidance on determining the bound and evaluating testing
policies against that.

There are many more issues regarding iteration and testing
that are not considered in this model, and the model could be
extended in many ways. For instance, the time-probability
curves could vary based on the total amount of time spent in
previous generate stages (not just the number of iterations
already completed). Research on methods for eliciting the
probability-time curves from managers and engineers and
from data about previous projects would be a useful step
towards providing better tools that help managers make these
decisions.

ACKNOWLEDGMENT
The author appreciates the insights and help provided by

Linda Schmidt, Joseph Donndelinger, my students, and many

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

other collaborators.

REFERENCES
[1] Thomke, Stefan, and Takahiro Fujimoto, “The effect of front-loading

problem-solving on product development performance,” Journal of
Product Innovation Management, Volume 17, pages 128-142, 2000.

[2] Clark, Kim B., and Takahiro Fujimoto, Product Development
Performance, Harvard Business School Press, Boston, Massachusetts,
1991.

[3] Ha, Albert Y., and Evan L. Porteus, “Optimal timing of reviews in
concurrent design for manufacturability,” Management Science,
Volume 41, Number 9, pages 1431-1447, 1995.

[4] Thomke, Stefan, and David E. Bell, “Sequential testing in product
development,” Management Science, Volume 47, Number 2, pages 308-
323, 2001.

[5] Simon, Herbert A., The Sciences of the Artificial, Second edition, The
MIT Press, Cambridge, Massachusetts, 1981.

[6] Reinertsen, Donald G., Managing the Design Factory, The Free Press,
New Yori, 1997.

[7] Schrage, Michael, Serious Play, Harvard Business School Press, Boston,
Massachusetts, 2000.

[8] Thomke, Stefan, Experimentation Matters, Harvard Business School
Press, Boston, 2003.

[9] Sandberg, Jorgen, “Understanding competence at work,” Harvard
Business Review, Volume 79, Number 3, pages 24-28, 2001.

[10] Pich, Michael T., Christoph H. Loch, and Arnoud De Meyer, “On
uncertainty, ambiguity, and complexity in project management,”
Management Science, Volume 48 Number 8, pages 1008-1023, 2002.

[11] Costa, Ramon, and Durward K. Sobek II, “Iteration in engineering
design: inherent and unavoidable or product of choices made?”
DETC2003/DTM-48662, ASME 2003 Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference, Chicago, Illinois, September 2-6, 2003.

[12] Krishnan, V., S.D. Eppinger, and D.E. Whitney, “Simplifying iterations
in cross-functional design decision making,” Journal of Mechanical
Design, Volume 119, pages 485-493, 1997.

[13] Smith, Robert P., and Steven D. Eppinger, “Identifying controlling
features of engineering design iteration,” Management Science,
Volume 43, Number 3, pages 276-293, 1997.

[14] Herrmann, Jeffrey, “Controlling iteration in product development
processes,” Technical Report 2005-91, Institute for Systems Research,
University of Maryland, College Park, Maryland, 2005.

	INTRODUCTION
	ITERATION
	THE BASIC MODEL
	No Learning: Identical Iterations
	Minimizing Expected Total Time
	A Risk-averse Manager

	ITERATION WITH LEARNING
	MULTIPLE PROBLEMS AND A SINGLE TEST RESOURCE
	CONCLUSION

