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Abstract—Problem-solving is a useful way to view product 

development.  In many cases, design teams iterate through a 
generate-test cycle until a successful design is found.  The time 
required to find a successful design is influenced by the testing 
strategy.  In particular, the amount of time spent generating a 
solution affects the probability of passing the test.  This paper 
introduces a novel model of the generate-test cycle, develops 
results from the model, and presents useful insights that can be 
used to make better decisions about managing problem-solving 
iterations. 
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I. INTRODUCTION 

PRODUCT development processes involve a great variety 
of activities and can be viewed from many perspectives.  

Moreover, there is much diversity among product 
development projects even within one firm, as some projects 
involve quite routine redesign of a well-understood product 
and others require inventing completely new designs for a 
new market opportunity. 

Problem-solving is one useful way to view product 
development [1], and, from this perspective, a product 
development project is a set of nested problem-solving cycles. 
Each problem-solving cycle searches for design alternatives, 
builds models of these, run experiments, and analyzes the 
result [2].  If the results are satisfactory, the cycle ends with a 
solution.  Otherwise, the cycle must repeat.   

The literature on managing product development has often 
looked at the problem of using testing and reviews to uncover 
problems that are introduced by design activities.  For 
instance, if there is a certain amount of design work must be 
done, but this design work introduces random flaws, then 
management needs to schedule reviews to find the flaws 
quickly, since the penalty for a design flaw is a delay needed 
to repeat the work that was done since the flaw occurred [3].  
The rework introduces no new flaws, but reviews take time, so 
too many reviews delay the project as well. In the case of 
sequential testing, [4] develop a policy for minimizing the 

total cost of testing and redesign under the assumption that the 
number of problems grows as the project approaches 
completion.  Such models are more appropriate for a routine 
design process that has a well-understood amount of work to 
do and flaws that are straightforward to fix.   
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However, in many cases, the amount of design activity 
needed is not known in advance.  Instead, there are 
performance requirements (which may be hard to translate 
into engineering specifications), and the task that is assigned 
to the design engineer (or product development team) is to 
find a design that meets these requirements.  This more 
closely matches the problem-solving perspective.  Like the 
problem-solving cycles mentioned earlier, this type of task 
(repeated at different levels and for different portions of the 
product) can occur many times in a product development 
project. 

For example, we studied the product development process 
of a firm that was developing a product for children with 
disabilities.  A child plays with the product in certain ways 
designed to help the child learn new skills.  The interface 
involves voice recognition and sensors for detecting the 
child’s gestures and body movements, to which the product 
reacts appropriately.  At a certain stage in the development of 
the product, the firm arranged testing sessions when children 
could play with a prototype of the product and the firm could 
determine if the design was satisfactory.  (Note that it was not 
possible, ahead of time, to specify precisely what a 
satisfactory design should do.)  After a testing session, the 
firm redesigned the product and then arranged another test, 
though they were never sure that the test would be successful 
since they could not test the product in the lab.  The firm 
continued these tests until they had a product that passed.  The 
design activities needed to reach this point were not possible 
to predict ahead of time, since the firm had never done 
anything like this before.  The design activities were moving 
the design towards the desired state, not introducing problems. 

This type of iteration has been described as the “generate-
test” cycle [5].  There is a chance that the results of a cycle 
will be unsatisfactory, but that likelihood depends upon the 
amount of effort spent in the generate stage of the cycle.  This 
raises the following question: how much effort should be spent 
in each generate-test cycle?  The answer affects the 
probability of finding a satisfactory solution during that cycle 
and thus the number of cycles needed until a satisfactory 
solution is found.  This, in turn, affects the total time needed 
to solve this problem. 
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This problem is most relevant to situations where an 
explicit testing step is needed and managerial judgment is 
needed to determine when the design should be tested.  This 
occurs in situations like the one described above, when the 
manager or customer cannot describe a satisfactory design but 
instead says “I know it when I see it.”  It also occurs when 
there is no substitute for sophisticated tests like crash tests, 
explosive tests, environmental stress tests, and similar 
activities.  For example, the design of a protective shield for a 
workstation that processes explosive material must undergo a 
destructive test to verify that it can protect the operator in case 
of a mishap.  Such a test requires a great deal of effort to 
create a prototype, setup the test equipment, perform the test, 
and analyze the results. 

The significance of this question is increasing as new 
technologies (including simulation, computer-aided 
engineering analysis, and rapid prototyping) become available 
and product development organizations modify their product 
development processes to take advantage of these tools.  The 
benefits of rapid experimentation have been well documented 
[6-8].  However, no single approach can be optimal for all 
product development processes.  Managers need insight and 
models for making good decisions about how to change their 
testing strategies. 

The problem is minimized if the requirements can be 
explicitly stated and possible solutions can be quickly, 
inexpensively, and accurately checked against them.  
However, two possible obstacles can occur. 

First, the design team may have limited ability to check a 
possible solution during the generate stage, especially if they 
depend upon models to estimate design performance (e.g., 
deflection of a beam, circuit board reliability, machining time, 
or vehicle maneuverability).  These models, based on 
scientific theory, experimental results, and experience, may be 
inaccurate or imprecise.  Thus, the actual performance of a 
design will vary from the predicted, and a design that should 
be adequate will fail during testing.   

Second, this type of requirements satisfaction is contrary to 
the desire to optimize performance that is deeply ingrained in 
engineering.  For instance, a study of Volvo engineers 
responsible for the final development of new engines revealed 
that some engineers believed their job was to make the engine 
meet performance specifications, others thought that they 
needed to resolve tradeoffs between performance categories, 
and a third set wanted to make the engine provide the 
customer with a good driving experience [9].  Design 
engineers who want to optimize performance are never “done” 
with a design; there are always additional features that can be 
added. 

This paper presents a simple model that focuses on 
minimizing the expected time needed to complete a design 
task that iterates through a generate-test cycle until the design 
passes.  The purpose of this analysis is to gain insight into this 
fundamental phenomenon that will help managers control 
their product development processes.  A key feature of the 
model is that the probability of passing the test is a function of 

the time spent in the generate stage, which is an independent 
variable.   

Unlike the models described above, the model presented in 
this paper is more appropriate for innovative design processes 
that involve creativity and more technical risks.  In the face of 
complexity or an inaccessible environment that makes 
learning ineffective, project managers may take a selectionist 
approach [10].  In this domain, a design team may choose to 
try multiple concepts, either in parallel or in sequence.  The 
model presented in this paper can be used to describe this 
sequential strategy by considering each iteration as a separate 
attempt to reach the design requirements.  A test can confirm 
that the team has found a satisfactory solution, so having a test 
quickly is a chance to complete the project as soon as that 
happens.   

This article proceeds as follows.  We start with a brief 
discussion of iteration.  Section III then presents the model of 
the generate-test cycle.  Section IV discusses the special case 
where each iteration is the same because there is no learning.  
Section V analyzes the general case, in which learning can 
occur from iteration to iteration.  Section VI describes a policy 
that can be used when multiple design teams need to use the 
same test resource.  We conclude the paper with a discussion 
of the insights gained from these models. 

II. ITERATION 
The iteration caused by the generate-test cycle is not the only 
type of iteration in product development.  Three types of 
iteration have been identified [11].  Design iteration occurs 
when the same design activity is done again on the same part 
of the product, but at a different level of abstraction.  
Behavioral iteration occurs when the same design activity at 
the same level of abstraction is done again on another portion 
of the product.  The iteration caused by generate-test cycles is 
rework iteration, because the same design activity at the same 
level of abstraction is done again on the same portion of the 
product.  An example of a generate-test cycle is the design of 
the Ariane 5 rocket.  Unfortunately, the rocket failed at launch 
(the ultimate test), and the rocket had to be redesigned. 

The diverse causes of iteration have inspired many 
approaches to minimize its impact.  A complete review is 
beyond the scope of this paper, but a few examples will be 
mentioned.  Iteration can be caused by the decomposition that 
occurs in product design [12].  Determining the value of some 
design variables early in the process limits the freedom of 
design variables that are set later.  This can lead to situations 
in which no solution is feasible or to solutions that perform 
poorly.  The properties of sequence invariance and task 
invariance can be used to improve the design process.  When 
there are many coupled design tasks that require information 
to be interchanged, performing each task requires the other 
tasks to be repeated.  In this case, a work transformation 
matrix model can determine which tasks require the most 
effort [13].   
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III. THE BASIC MODEL 
In this model of the generate-test cycle, the probability that 

a design will pass the test increases as the generate stage 
continues.  This occurs because the design team works on the 
design more, finding better solutions, discovering more 
relevant information, double-checking their analysis, and 
allowing new issues to appear so that the team can resolve 
them before the test. 

Another key feature of this model is that the test takes time.  
The particular activities necessary for a test depend upon the 
type of test, but they may include constructing a prototype, 
planning, obtaining approvals, conducting the test, analyzing 
the results, documenting the results, preparing presentation 
materials, and holding a review or meeting to discuss the 
results. 

This situation presents an important question for 
management, who must decide how long the design team 
should spend in the generate stage that precedes the test.  The 
key performance measure is the time until a successful design 
is found.  This time is a random variable, and there can be a 
tension between minimizing its expected value and 
minimizing its variance, as we will see. 

The design team designs the product during the generate 
stage and then proceeds to a test that determines whether the 
product at that point is satisfactory.  If so, the design activity 
is done.  If not, the design team must redesign the product 
(repeat the generate stage) and return to the test.  The design 
team must repeat this loop until the product passes the test.  
Each passage through this loop is an iteration.  

Let r denote the time needed to conduct a test (this is 
given).  Let ti denote the time spent in the generate stage 
during the i-th iteration.  This decision variable must be 
determined at the beginning of the iteration.  Let pi(ti) be the 
probability of passing the test in the i-th iteration, which 
depends upon the time spent in the generate stage.  Intuitively, 
it is reasonable that pi(ti) is an increasing function that 
approaches 1 in the limit.   

We assume that, if the product fails the test and the design 
team has to conduct another iteration, the probability of 
success must return to zero at the beginning of the generate 
stage (since the existing design is known to be bad).  Now, if 
the test provides information from which the design team can 
learn, then pi(ti) may be different. 

If there is no learning from iteration to iteration, then we 
can assume that all of the pi(ti) have the same form.  Let this 

function be p(t).  We can also use this model as an 
approximation to the more complex case. 

Generate
Stage Test

Fail

Pass

 
Fig. 1.  The generate-test cycle model.  The design team iterates through this
cycle until their design passes the test. 
  

One possible form for p(t) is 

( ) 1 ,at 0p t e for t−= − >  (1) 

However, other forms may be appropriate. 

IV. NO LEARNING: IDENTICAL ITERATIONS 

A. Minimizing Expected Total Time 
We first consider the case of minimizing the expected total 

time.  In this case, it is easy to show that the design team 
should spend the same amount of time in the generate stage 
each iteration.  Given that the design team must perform the 
generate stage, finding a successful design does not depend 
upon how many iterations the design team has performed 
previously.  That is, there is a memoryless property.  The 
expected time needed to find a successful design is 
independent of what has happened before.  Thus, the policy 
should remain the same each time. 

For a specific value of t, which determines p(t), the number 
of iterations needed is a random variable that has a geometric 
distribution.  The expected number of iterations (including the 
successful one at the end) is 1/p(t). 

The total time needed to find a successful design is t + r 
times the number of iterations.  Thus, T(t) = (t + r)/p(t) is the 
expected total time.  The shape of this curve depends upon the 
shape of p(t).  Given a test time r, minimizing the expected 
total time requires choosing the optimal time t* for the 
generate stage.  Choosing t too small leads to a large number 
of iterations, while choosing t too large leads to long stages.   

If p(t) = 1 – e-at, T(t) is a convex function that has a single 
optimal solution at the point t* that satisfies eat* - at* = ar + 
1.  Fig. 2 shows the shape of T(t) for different values of r in 
this case. 

The test time r has a significant impact on the optimal 
solution in this case.  As r approaches 0, t* and T(t*) approach 
0.  As r increases, t* increases and T(t*) increases.  In some 
sense, the generate stage t is similar to a batch size that is used 
to avoid setups (in this case, tests).  Instead of worrying only 
about the optimal batch size (in this case, t*), it also makes 
sense to reduce the setup cost (the test time r), which allows 
smaller batches (quicker tests) and improves the overall 
performance.  This result, which matches our intuition and 
others’ observations [6-8], provides evidence of the model’s 
validity. 

If the design is a more routine project where the design 
team can generate a design that will certainly pass the test, we 
should consider a different function for the probability of test 
success.  Suppose that there is a bound G on the time needed 
for the generate stage and the probability of test success 
equals 1 if the generate stage is this long.  Moreover, the 
probability of test success is a linear function of t: p(t) = t/G.  
Then, the expected total time T(t) = (t + r)/p(t) = (t + r)G/t = 
G (1 + r/t), which reaches its minimum at time t* = G, 
independent of the test time r.  The optimal expected total 
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time is T(t*) = G + r, and there is no uncertainty about the 
value (since p(G) = 1).  This shows that iteration is not helpful 
in this type of design scenario. 

Risk aversion also affects the optimal policy, as the next 
section discusses. 

B. A Risk-averse Manager 
Managers are notoriously risk averse.  A risk averse 

manager worries more about the variability of project duration 
than the expected duration.  If there is a deadline, the risk-
averse manager is most concerned about maximizing the 
probability that a successful design will be found by the 
deadline.  (Ideally, this probability will equal one.)   

Let D be the given deadline for the design to pass the test.  
The manager must decide on the maximum number of 
iterations to do and the time to spend in each iteration’s 
generate stage.  If the team gets to the last iteration, it is easy 
to show that the amount of time spent in that generate stage 
should be just enough to allow time for one last test before the 
deadline. 

For example, suppose the deadline is 90 days from now, and 
the test takes 5 days.  Then, the design team could perform 
one iteration, spending 85 days in the generate stage.  Or the 
design team could spend 45 days in the generate stage in the 
first iteration.  The first test ends 50 days from now.  If the 
design fails the first test, the design team will have 40 days 
remaining, so they can spend 35 days in the generate stage in 
the second iteration.  Or they could spend 60 days in the 
generate stage in the first iteration and 20 days in the generate 
stage in the second iteration.  Or they may plan for three, four, 
or more iterations.   

Let m be the number of planned iterations.  Let ti be the 
amount of time spent in the generate stage of the i-th iteration.  
The time for the i-th iteration is ti + r.  Therefore, to allow 
time for the m tests, the sum t1 + … + tm must equal D - mr.   

Let qi be the probability of a successful test by the end of 
the i-th iteration.  Then, q1 = p(t1).  For i > 1, qi = qi-1 + (1 -
 qi-1) p(ti). 

Let Pm be the maximum probability of success when the 
design team plans to have m iterations.  
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Fig. 2.  Graph of expected total time versus time per iteration for different values of test time.  In this case, iterations occur without learning, and the probability 
time curve has an exponential form.  The three curves correspond to different values of test time: 5, 20, and 40 time units.  These curves show that, as the test
time increases, the optimal time per iteration increases, and the minimum expected total time increases.  
  

Pm = max {qm: t  + … + tm = D - mr} 1
If p(t) = 1 – e-at, it is easy to show that, for a given m, qm = 

1 – e-a(D-mr) for any feasible t1, …, tm. 
Thus, Pm = 1 – e-a(D-mr).  This is maximized when m = 1, 

so the design team should plan one iteration. 
If p(t) = t/G and G > D - r, then note that 1 – Pm equals min 

{1 - qm: ti + … + tm = D - mr}.  1 - qm is the probability of 
failing all m iterations, which can be expressed as follows: 

11 1 1 m
m

ttq
G G

  − = − −  
   

  (2) 

This reaches its minimum when all of the ti except one are 
equal to 0.  The non-zero ti equals D - mr.  Thus, 1 - Pm = 1- 
(D - mr)/G, so Pm = (D - mr)/G.  As in the previous case, this 
is maximized when m = 1, so the design team should plan one 
iteration. 

If p(t) = t/G and G ≤ D - r, then it is clear that the design 
team can spend G time units in the generate stage of the first 
iteration and certainly pass the test on the first try. 

V. ITERATION WITH LEARNING 
When there is learning from iteration to iteration, the 

function pi(ti) is different each iteration.  Because the general 
case is intractable, we consider the case where the function 
pi(ti) converges to a function p(t) after m iterations.  That is, 
pi(ti) = p(t) for i > m. 

Let Ri be the expected remaining time needed to pass the 
test at the beginning of the i-th iteration.   

( ) 11 ( )i i i i iR t r p t R+= + + −  (3) 
Based on the results for the case with no learning, we know 

that, if the design team fails on the first m iterations, then, for 
the subsequent iterations, they should choose t to minimize 
Rm+1 = (t + r)/p(t).  Then, we can find the optimal tm, tm-1, 
..., t1 by minimizing Rm, Rm-1, ..., R1 using (3). 

Consider, as an example, a situation with the following 
probability functions: 
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p1(t) = 1 – e-t 
p2(t) = 1 – e-2t 
pi(t) = 1 – e-4t for i > 2. 

If r = 5 time units, the design team can minimize R3 by 
choosing t = 0.796 time units (for all iterations after the 
second), which yields R3 = 6.046 time units.  Then, to 
minimize R2, t2 should be 1.246 time units, which yields  
R2 = 6.746 time units.  Then, to minimize R1, t1 should be 
1.909 time units, which yields R1 = 7.909 time units.   

VI. MULTIPLE PROBLEMS AND A SINGLE TEST RESOURCE 
The above results indicate how much time a design team 

should spend in the generate stage before performing a test to 
determine if they have solved their problem.  This analysis 
assumed that the design team’s activities are independent of 
any other design teams.  However, in practice, an organization 
may have limited testing resources.  For instance, there may 
be a single facility that can perform an explosive test.  For a 
given testing resource, there will be multiple design teams 
working to solve problems that require that testing resource.  
Then, there may exist queueing for the testing resource.  If 
design teams test too often, that increases the queueing and 
the time for all teams to solve their problems.  Ideally, the 
numerous design teams that require the testing resource 
should find a joint policy that is best for everyone [14].  
However, such coordination, even if tractable, may be 
difficult to implement. 

To simplify the situation, consider the expected number of 
tests that each problem requires to be solved.  This affects the 
utilization of the testing resource.  Maintaining a reasonable 
utilization is an important management objective.   

Consider now a specific class of problems that requires a 
specific testing resource.  Let λ be the rate (in problems per 
time unit) at which new problems in this class arrive.  As 
before, r is the time needed to perform a test.  We assume that 
λr < 1 so that the testing resource has enough capacity to 
perform at least one test for each problem.  Let n be the 
expected number of tests that each problem will require before 
it is solved.  The utilization u of the testing resource equals 
λrn.  Since u must be less than one, this provides an upper 
bound on n.  The system will be stable if and only if 
n < 1/(λr).  Moreover, if management wants to limit 
utilization to at most U (where U ≥ λr) then the expected 
number of tests must be no greater than U/(λr).  This rule 
provides a simple way to coordinate problem-solving.  Each 
design team must choose a policy that yields an expected 
number of tests less than U/(λr).   

If there is no learning, then n = 1/p(t), and the design team 
must choose t large enough so that p(t) > λr/U. 

If there is learning, then we can use the following procedure 
to calculate the expected number of tests based on t1, ..., tm, 
and t for the remaining iterations.  

Let Ni be the expected number of remaining tests including 
the one in the i-th iteration.  n = N1. 

( ) 11 1 ( )i i iN p t += + − iN  (4) 
If the design team fails the first m iterations, then, for the 

subsequent iterations, they will spend t time units in the 

generate stage of each subsequent iteration.  Thus, Nm+1 = 
1/p(t).  Then, we can find the remaining Nm, Nm-1, ..., N1.  
The design team should set t1, ..., tm, and t so that N1 ≤ 
U/(λr).   

Consider again the example presented above.  If the design 
team follows a policy with t1 = 1.909 time units, t2 = 1.126 
time units, and t = 0.796 time units, the expected number of 
remaining tests at each iteration can be calculated as follows:  
N3 = 1.043.  N2 = 1.086.  N1 = 1.161.   

VII. CONCLUSION 
This paper presents a deliberately simple model of product 

development and focuses on the generate-test cycle in order to 
obtain some useful insights into the issue of controlling 
product development processes.  In particular, to minimize the 
expected time needed to solve a design problem, the optimal 
strategy depends upon the nature of the relationship between 
the time spent developing a solution and the probability of test 
success.  Performing more iterations can reduce the expected 
total time to solve a problem in some cases.  Also, reducing 
the time needed to perform a test has a significant impact on 
the expected duration.  Not only is there less test time per 
iteration, reducing the test time makes shorter generate stages 
(more frequent iteration) desirable.  

When the design problem is routine, then iteration does not 
reduce the expected total time.  The team should finish the 
generate stage to get a design that will certainly pass.  
Reducing the time needed to perform a test has less impact on 
the expected duration in this case.   

Iterations do add variability to the time needed to find a 
successful design.  In a creative design process, a risk-averse 
manager who wishes to meet a deadline should avoid 
iteration, since it does not increase the probability of meeting 
the deadline.  Also, reducing the time needed to perform a test 
has a significant impact on this probability, since it means 
more time to perform the design stage.   

If there is a shared test resource that many design teams 
need to use to solve problems, then design teams should 
follow policies that bound the expected number of tests that a 
team will perform.  Such a strategy ensures reasonable 
utilization of the shared test resource.  Our model provides 
guidance on determining the bound and evaluating testing 
policies against that. 

There are many more issues regarding iteration and testing 
that are not considered in this model, and the model could be 
extended in many ways.  For instance, the time-probability 
curves could vary based on the total amount of time spent in 
previous generate stages (not just the number of iterations 
already completed).  Research on methods for eliciting the 
probability-time curves from managers and engineers and 
from data about previous projects would be a useful step 
towards providing better tools that help managers make these 
decisions. 
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