High Frequency Cortical Processing of Continuous Speech in Younger and Older Listeners

Joshua P. Kulasingham1, Christian Brodbeck1, Alessandro Presacco1, Stefanie E. Kuchinsky2,1, Samira Anderson1, Jonathan Z. Simon1

1 University of Maryland
2 Walter Reed National Military Medical Center
Cortical MEG FFR TRFs in Younger and Older Listeners

Joshua P. Kulasingham¹, Christian Brodbeck¹, Alessandro Presacco¹, Stefanie E. Kuchinsky²,¹, Samira Anderson¹, Jonathan Z. Simon¹

¹ University of Maryland
² Walter Reed National Military Medical Center
Why Investigate This?

• Aging
 - *subcortical fast EEG* responses: younger > older
 - *cortical slow MEG/EEG* responses: older > younger
 - cortical fast MEG?

• How much of EEG FFR is actually cortical?
 - effects of attention, language, etc.

• Contributions to responses from stimulus carrier vs envelope
Outline

• Background & motivation
 ‣ Frequency Following Response (FFR)
 ‣ Cortical Continuous Speech Responses
 ‣ EEG FFR for Continuous Speech
 ‣ MEG FFR for Continuous Speech

• Methods

• Results

• Summary
Outline

• Background & motivation
 ‣ Frequency Following Response (FFR)
 ‣ Cortical Continuous Speech Responses
 ‣ EEG FFR for Continuous Speech
 ‣ MEG FFR for Continuous Speech
• Methods
• Results
• Summary
Frequency Following Response (FFR)

Audio (/da/)

Adapted from Coffey et al., Nat Commun (2016)
Frequency Following Response (FFR)

Audio (/da/)

Amplitude (a.u.)

Time (s)

FFR

Amplitude (µV)

Onset

EEG

Amplitude (µV)

Time (s)

Adapted from Coffey et al., Nat Commun (2016)
Frequency Following Response (FFR)

* EEG response is technically “Envelope Following Response”, since stimuli were presented with alternating polarity

Adapted from Coffey et al., Nat Commun (2016)
Frequency Following Response (FFR)

Audio (/da/)

EEG

MEG

Adapted from Coffey et al., Nat Commun (2016)
Frequency Following Response (FFR)

Adapted from Coffey et al., Nat Commun (2016)
Outline

• Background & motivation
 ▸ Frequency Following Response (FFR)
 ▸ Cortical Continuous Speech Responses
 ▸ EEG FFR for Continuous Speech
 ▸ MEG FFR for Continuous Speech
• Methods
• Results
• Summary
Spectro-Temporal Response Function (STRF)

(full speech duration ~60 s)

Ding & Simon, J Neurophysiol (2012)
Temporal Response Function (TRF)

• STRF separable (time, frequency)
• 300 Hz - 2 kHz dominant carriers
• $M50_{STRF}$ positive peak
• $M100_{STRF}$ negative peak

Ding & Simon, PNAS (2012)
Outline

• Background & motivation
 ▸ Frequency Following Response (FFR)
 ▸ Cortical Continuous Speech Responses
 ▸ EEG FFR for Continuous Speech
 ▸ MEG FFR for Continuous Speech

• Methods

• Results

• Summary
EEG FFR Responses to Continuous Speech

Forte et al., eLife (2017)
*Response modulated by selective attention

Outline

• Background & motivation
 ▸ Frequency Following Response (FFR)
 ▸ Cortical Continuous Speech Responses
 ▸ EEG FFR for Continuous Speech
 ▸ MEG FFR for Continuous Speech

• Methods

• Results

• Summary
MEG FFR Responses to Continuous Speech

“pitch (ca. 100 Hz) elicited a neural resonance bound to a central auditory source at a latency of 30 ms”

Hertrich et al., Psychophysiology (2012[1])
Outline

• Background & motivation
 ‣ Frequency Following Response (FFR)
 ‣ Cortical Continuous Speech Responses
 ‣ EEG FFR for Continuous Speech
 ‣ MEG FFR for Continuous Speech

• Methods

• Results

• Summary
Methods

• 17 younger (18-27 yrs), 23 older adults (61-78)
• 2 spoken passages (male) x 60 s x 3 trials
• Previously acquired dataset (Presacco et al., 2016a, b)
• Neural source localized TRFs (Brodbeck et al., 2018)
• Regions of interests (ROIs)
 - cortical (temporal lobe)
 - subcortical (includes brainstem & thalamus)
Speech Representations

- Two stimulus predictor variables
 - Carrier (70 - 300 Hz bandpass filter)
 - High frequency envelope (HFE)
 - take auditory spectrogram (Yang & Shamma, 1992)
 - extract 300 - 4000 Hz components, bandpass at 70 - 300 Hz, sum over bands
Speech Representations

- **Stimulus Waveform**
- **Auditory Spectrogram**
- **High frequency envelope (HFE)**
 - Frequency range: 70 - 300 Hz
- **Carrier**
 - Frequency range: 70 - 300 Hz
Methods

• Causal IIR filter with minimum phase distortion
 - Bessel filter (3rd order)
 - Maximally flat group delay*

• Neural source localized TRFs (Brodbeck et al., 2018)
 - Estimate TRFs with Boosting (temporally sparse)
 - TRF at every virtual source dipole (voxel) throughout the Regions of Interest
 - HFE & Carrier compete against each other to explain response variance
Outline

• Background & motivation
 ‣ Frequency Following Response (FFR)
 ‣ Cortical Continuous Speech Responses
 ‣ EEG FFR for Continuous Speech
 ‣ MEG FFR for Continuous Speech

• Methods

• Results

• Summary
TRF Source Analysis (volume space)

Prediction accuracy much larger for cortical than subcortical regions

For younger adults only: prediction accuracy larger for right hemisphere
TRF Results
High Frequency Envelope

Cortical ROI

Younger

Older

Sub-cortical ROI

Response latency and amplitude ➔ predominantly cortical origin

older vs younger not significantly different
Source Localization

• Predominantly cortical origin
 - Cortical ROI amplitude >> subcortical ROI
 - Cortical latency (~35 ms) for both ROIs
 • Observed subcortical TRFs consistent with MEG-leakage-artifact cortical TRFs
• MEG subcortical contributions not ruled out
 - but much weaker than cortical
 - would need more statistical power to see
• Proceed assuming cortical origin
 - consistent with M50 neural source, Core AC
TRF Source Analysis (cortical surfaces)

Prediction accuracy comparable across age groups

For younger adults only: prediction accuracy larger for right hemisphere
Cortical TRF Results

High Frequency Envelope

Younger

- Carrier
- Left
- Right
- n.s.

Older

- Carrier
- Left
- Right
- n.s.

35 ms
time (ms)

older vs younger not significantly different

HFE TRF significantly greater than carrier TRF (old & young)

Cortical response driven predominantly by High Frequency Envelope
Frequency Distributions

TRF Frequency Responses

Stimulus Representation
Frequency Responses

TRF peak at ~84 Hz
Robust across age group & stimulus representation

Stimulus representations:
higher, and different, peak frequencies

TRF peak frequency arises from cortical constraints, not stimulus
Outline

• Background & motivation
 ▸ Frequency Following Response (FFR)
 ▸ Cortical Continuous Speech Responses
 ▸ EEG FFR for Continuous Speech
 ▸ MEG FFR for Continuous Speech

• Methods

• Results

• Summary
• MEG responses to continuous speech dominated by cortical sources with peak frequency ~ 85 Hz
 - peak latency varies 30 – 40 ms across subjects
 - consistent with M50 origin, core auditory cortex
 - onset significant at 13 ms
 - cannot rule out subcortical contributions
 - frequency specificity not driven by stimulus spectrum directly
Summary II

• Responses dominated by High Frequency Envelope more than Carrier
 - Perhaps entirely High Frequency Envelope

• Right hemisphere lateralization
 - Only significant for younger listeners

• Absence of age-related differences(!)
 - Disagrees with low frequency cortical responses
 - Disagrees with high frequency EEG responses
Thank You
Acknowledgements

Current Lab Members & Affiliates

Christian Brodbeck
Alex Presacco
Proloy Das
Jason Dunlap
Theo Dutcher
Kevin Hu
Dushyanthi Karunathilake
Joshua Kulasingham
Natalia Lapinskaya
Sina Miran
David Nahmias
Peng Zan

Victor Grau-Serrat
Julian Jenkins
Pirazh Khorramshahi
Huan Luo
Mahshid Najafi
Krishna Puvvada
Jonas Vanthornhout
Ben Walsh
Yadong Wang
Juanjuan Xiang
Jiachen Zhuo

Mounya Elhilali
Tom Francart
Jonathan Fritz
Michael Fu
Stefanie Kuchinsky
Steven Marcus
Cindy Moss
David Poeppel
Shihab Shamma

Past Lab Members & Affiliates

Nayef Ahmar
Sahar Akram
Murat Aytekin
Francisco Cervantes Constantino
Maria Chait
Marisel Villafane Delgado
Kim Drnec
Nai Ding

Pamela Abshire
Samira Anderson
Behtash Babadi
Catherine Carr
Monita Chatterjee
Alain de Cheveigné
Stephen David
Didier Depireux

Past Undergraduate Students

Nicholas Asendorf
Ross Baehr
Anurupa Bhonsale
Sonja Bohr
Elizabeth Camenga
Katya Dombrowski
Kevin Hogan
Alex Jiao
Andrea Shome
James Williams

Collaborators

Pamela Abshire
Samira Anderson
Behtash Babadi
Catherine Carr
Monita Chatterjee
Alain de Cheveigné
Stephen David
Didier Depireux

Funding

NIH (NIDCD, NIA, NIBIB); NSF; DARPA; UMD; USDA