MEG Response to Band-Passed Noise

Julien Dagenais
What is MEG?

- Magnetoencephalography (MEG) is the measurement of extracranial magnetic fields produced by electrical currents within the brain.
- In MEG recordings, weak magnetic fields outside the head are detected with an array of sensors, and on the basis of the measured signals, the underlying cerebral currents are estimated.
- Since cerebral magnetic fields are extremely weak when compared, for example, with the Earth's magnetic field, special devices are needed to measure them. Development of sensitive SQUID (Superconducting Quantum Interference Device) sensors allows the detection of small changes in the magnetic fields.
Purpose of Experiment

- Compared to the visual system, the functional organization of the human auditory cortex is not well understood.
- Research on non-human primate anatomy and physiology as well as recent human neuro-imaging work has generally skipped over studies on band-passed noise.
- This experiment attempts to understand how the brain reacts to band-passed noise at different levels of bandwidth.
Defining a Peak

Latency/Amplitude

Width

Magnetic Field [fT]

Time [msec]
Defining the M Peaks

- **M50**: defined sink/source orientation with peak at ~35-70 ms
- **M50b**: same orientation but appearance anterior to the M50 and at a ~15ms delay
- **M100**: opposite orientation with peak at ~90-160 ms
- **M150**: same orientation as M50 with appearance at ~145-195 ms
The M50b

Found in pure tone in just 1 of 24 cases
Found almost exclusively in band-passed noise (18 of 24 cases)

65ms

91ms
Methodology

- 5 stimuli: 1000 hz tone, $\frac{1}{4}$ oct, $\frac{1}{2}$ oct, 1 oct, 2 octs with center frequencies of 1000 hz
- 100 ms duration, 5 ms ramps
- 1000 repetitions

Processing:
- 1) De-Noising
- 2) Epoch and Concatenation
- 3) LPF at 30 hz
- 4) Pre-trigger baseline correction
Defining the Channels

R0020 Localizer RH:
5 best Sink/Source
Results

- As bandwidth increases in the M100, amplitude decreases (with exception at 2 octaves)
- The M50 is amplitude-dominant in the LH
- M50b is consistently present solely in band-passed noise, effectively becoming more pronounced as bandwidth increases
- Waveform peak responses to noise are context dependant – the presence of noise causes a significant delay to the M50/M100/M150 for pure tone
- The location of these dipoles are decidedly anterior to the localizer dipoles
A Typical Response

Examining the Peaks

- Width
- Latency
- Amplitude
Latency vs. Condition

Few clear trends in bandwidth
Amplitude vs. Condition (RH M100)
Blue: R0020 - Red: R0037 - Yellow: R0045
Localizer Dipoles in Red, Pure Tone in Orange
The Delayed Response

M50

M100

R0045 LH
½ Octave

M50

M100
Vs the Localizer (Time Domain)

R0020 LH Localizer

R0020 LH Pure Tone

R0020 LH 2 Octave
The M50b

Width and Amplitude increase with bandwidth

\[\frac{1}{4} \text{ Octave} \]

\[1 \text{ Octave} \]

\[2 \text{ Octave} \]
M50b Width/Amplitude
M50 LH-RH Amplitude

Amplitude (LH - RH M50 across all conditions/subjects)

2 Octaves
M50 LH vs RH Amplitude
M100 LH-RH Latency

Latency (LH-RH M100 across all conditions/subjects)
M100 LH vs RH Latency
M150 largest spread in latency
M100 largest spread in amplitude (and width)
Conclusions

- Dominance of LH M50 consistent with previous studies on all types of band-passed noise
- M50b is consistently present solely in band-passed noise, effectively becoming more pronounced as bandwidth increases
- Waveform peak responses to noise are context dependant – the presence of noise causes a significant delay to the M50/M100/M150 for pure tone
- The location of these dipoles are decidedly anterior to the localizer dipoles
Thanks

Jonathan Z. Simon
David Poeppel
Maria Chait
Nayef Ahmar
Shantanu Ray
JuanJuan Xiang