Integration of Reusable Launch Vehicles (RLV) into the Air Traffic Management System

J.K. Kuchar, K.A. Khan, J. Falkner
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

A.A. Trani, H.D. Sherali
J.C. Smith, S. Sale, Q. Chuanwen
Department of Civil Engineering
Department of Industrial Engineering

Sponsor: FAA Office of Commercial Space

Kelvin Coleman

NEXTOR - National Center of Excellence for Aviation Operations Research
Motivation

• Current mode of airspace utilization for space operations
 • Activate Special Use Airspace (SUA), reroute air traffic
 • Large spatial and temporal safety buffers
 • Limited flexibility
 • Disparity between air and space user costs

• Improvements in sensors & datalink capabilities
 • Potential to reduce uncertainty of some vehicle trajectories
 • More efficient information flow between ATC - space operator
 • Example: launch delay of STS-87 (with John Glenn) due to intruding GA aircraft

• Advanced ATM models could streamline the integration of RLVs with ATC
Opportunities and Key Issues

- Some vehicle types / missions might be integrated with air traffic
 - Reusable Launch Vehicles with conventional phases of flight

- Key Research Issues

 1) What is required for integrated operations to occur?
 Equipage, communications, surveillance requirements

 2) How should those operations be carried out?
 Flow management procedures

 3) What are the user & service provider cost / benefit trade-offs?
Scope of Work

• Investigate current and future methods of RLV-aircraft separation in use at the Special Use Airspace (SUA) areas around the US Launch Ranges (Cape Canaveral, Vandenberg AFB, and Wallops AFB)

• Identify mission profiles of the proposed RLVs and characteristics of the respective phases of flight

• Develop a generalized model of airspace / air traffic / RLV operations to provide a consistent framework to describe and evaluate options

• Define potential modes of operation / airspace utilization for RLV operations by understanding current requirements and procedures, and explore possible alternatives

• Develop a methodology to estimate RLV operation impacts
Summary of Previous Activities

- Collected data on proposed RLVs
- Surveyed typical phases of flight / mission profiles
- Identified 8 potential modes of operation
 - Continue use of SUA (strategic segregation)
 - Activate new SUA
 - Mission-specific SUA
 - Controlled Space Activity Zone (c.f. Class B airspace)
 - RLV corridor
 - RLV as high-priority vehicle (vectors)
 - RLV as nominal-priority vehicle
 - Self-separation
Phase II Activities

• Investigate trade-offs in tactical modes of operation
 • Appropriate safety buffer size and duration
 • Equipage and procedural requirements
 • Explore limits of tactical ATC vectors (heading / altitude / speed)
 • Ability to manage high speeds / vertical rates
 • Display / procedure / control issues

• Preliminary model development
 • Describe when SUA vs. Tactical operation can/should be used
 • Impact of state uncertainties, vehicle profile & performance
 • Airspace conflict and sector analysis models
 • Airspace planning model development and validation
RLV Airspace Usage Implications

- Safety
- Vehicle equipment requirements
- Ground equipment requirements
- Operator workload
- Air traffic flow
- RLV operations

VPI
- MIT

MIT
- VPI

NEXTOR - National Center of Excellence for Aviation Operations Research
RLV Operation Modes

Current Operational Mode
a) Strategic
b) Large SUA
c) Indirect integration

Future Operational Modes
a) Tactical
b) Smaller SUA
c) Direct integration
Framework to Model RL V Impacts

Modes of Operation Analysis

ATC Scenario Restriction Database

Flight Plans/Tracks Trajectory Descriptor

Simulation Model RAMS and SIMMOD

Optimization Model

Airspace Scenario Generation

Cost Benefit Analysis

Non-airspace User Cost

1 AOM = Airspace Occupancy Model
2 AEM = Aircraft Encounter Model
3 Airspace Planning Model
NEXT OR/MITRE Relationship

MITRE (Looking at current operational practices)

- Quantified operational cost for two launches from CCAS using actual traffic data and perceived delays
- Same approach to evaluate Kodiak Island operations

NEXTOR (Studying future operational practices)

- Identified possible tactical separation envelopes and SUA regions
- Modeling generic size spaceports (Phase III) using simulation tools
- Quantifying costs for future Free Flight conditions
- Minimizing detour impacts (optimization model)
Conflict Detection and Resolution

- Protected Zone: safety buffer around each vehicle
 - Aircraft: 5 nmi, ± 1000 or 2000 ft.
- Alert Zone: Space in which action must be taken to prevent PZ violation
- As Alert Zone size increases, SUA becomes more attractive
Tactical/Strategic Conflict Evaluation

- Velocity
- Geometry
- Current State Uncertainties
- Projected Trajectory Uncertainties
- Maneuverability
- Delays

Conflict Model

- Traffic density
- Alert Zone size

Airspace Model

- Alert rates
- Spatial extent of alerts

Comparison aids in Cost/Benefit studies

Tactical

Strategic

- SUA Mode of Operation

- Reroute rates
- Spatial extent of rerouting

Traffic density
Simplified Tactical Alert Zone Model

Enables first-order tradeoff analysis (uncertainty vs. AZ)
Example Preliminary Trade Studies

Effect of Maximum Turning Angle

- 15°
- 30°
- 45°
- 60°

Effect of Turn Rate

- 0.4°/s
- 0.8°/s
- 1.4°/s

Instantaneous
Alert Zone Growth Due to Trajectory Uncertainty

Tactical conflict resolution untenable at large trajectory uncertainties & velocities

\(V_I / V_O = 0.5 \)
Network Flow Modeling and Optimization

• Traffic flow model analysis tools
 • SIMMOD - predicts delays and changes in travel times for current scenario conditions
 • RAMS - predicts delays, travel times and sector workload for current and anticipated 2005 conditions (i.e., Free Flight)

• Development of an optimization model to reduce the impacts of RLV operations around sites
 • Dynamically schedules flights affected by RLV operations to minimize a performance index (cost and workload)
 • Model development tools: Matlab\(^1\) and CPLEX\(^2\)

1. Matlab is a trademark of the Mathworks Inc.
2. CPLEX is a trademark of ILOG International
Sample Sector Occupancies

Longitude (deg)

Latitude (deg)

Zulu Time (min)

Traffic (acft)

STS SUA Activation
Optimization Model to Integrate RL V with Minimum Cost to FAA and Airspace Users

- Attempts to mimic and advanced ATM system of the future (i.e., 2005, 2010)

- A mature form of Collaborative Decision Making is in place (i.e., airlines and FAA share information about flight schedules and possible delays associated with each flight)

- *Free Flight* operations will be routine across NAS for all enroute sectors and flight levels

- Considers FAA resources (i.e., a function of traffic density), sector and airline equity constraints

- Serves as a policy tool to evaluate operations around spaceports
Several flight plan detour strategies can be studied. The best strategy should be a system optimal alternative with minimum effects on users and service providers.
Airspace Planning Model Optimization Model

Objective function

\[
\text{Min } \sum_{i \in M} \sum_{p \in P_i} C_{ip}x_{ip} + \sum_{s \in S} \sum_{n = 1}^{\bar{n}_s} \mu_{zn} y_{sn} + \mu_e (x_u - x_l^e) + \mu_u x_u
\]

- Cost of adopting flight plan \((i,p)\)
- Penalty associated with sector load
- Penalty to maintain equity among airlines

Assignment Constraint (a single flight plan is selected)

Sector Load Constraint (restricts the number of flights to sector \(n_s\))

Airline Equity Constraint (penalizes equally all airlines flying)
The optimization model selects among *surrogate* flight plans to minimize the cost to users and service providers.
Integration with Existing N ARIM Tools

- Currently generation of surrogate flight plans is done using a simple globe circle flight planning module
- Future will use proven tools such as OPGEN\(^1\)
- OPGEN output data structure is already integrated in AOM/AEM

\[\text{OPGEN} \rightarrow \text{AOM} \rightarrow \text{ATM Strategy}\]

\[\text{Demand Func.} \rightarrow \text{AEM} \rightarrow \text{APM}\]

\(^1\)A single flight optimization program developed by CSSI for FAA
Implementation of Optimization Model

The current optimization model is implemented in CPLEX, a standard mixed-integer programming solver.
Possible ATM Extensions of the Optimization Model

- Analysis of catastrophic RLV failures (i.e., estimation of the number of aircraft affected)

- **Special Use Airspace** is only one of many possible airspace restrictions in NAS

- **Bad weather phenomena** can be treated as a special case of SUA (i.e., dynamic SUA)

- **Dynamic allocation of flight plans** in the future will continue be a mutual agreement between airlines and FAA and without any doubt will consider the ATC resources available (i.e., decentralized control)

- **Dynamic airspace sectorization** problems (time varying airspace sectors to balance sector loads)