A New Paradigm to Model Aircraft Operations at Airports: The Virginia Tech Airport SIMulation Model (VTASIM)

Dr. Antonio A. Trani
Dr. Hojong Baik
Transportation Engineering

Dr. Julio Martinez
Vineet Kamat
Construction Engineering

Department of Civil and Environmental Engineering
Virginia Tech

NEXTOR Research Symposium
November 13, 2000
Outline of this Presentation

- Virginia Tech efforts in airport simulation and modeling future NAS operations
- Components of VTASIM
 - Algorithms
 - Sample results
- Dynamic Construction Visualizer
 - Model description
 - Visualization post-processor
- Final Remarks
The Virginia Tech Airport Simulation Model

- Hybrid simulation model
- Microscopic in nature (second-by-second output if required)
- Models aircraft operations around the airport terminal area (includes sequencing)
- Models ATC-pilot interactions explicitly (voice and datalink)
- Dynamic taxiing plans (true dynamic traffic assignment)
- Developed under the auspices of the FAA NEXTOR basic research funding (ATM agenda)
Framework for VTASIM

- Nominal Schedule for Arrivals
- Separation Rule
- Nominal Schedule for Departures

Aircraft Sequencing Problem (ASP)

Optimal sequence and schedule

Time-dependent O-D (between gates and runways)

Network Assignment Problem (NAP)

Optimal taxiing routes for arrivals and departures

Simulation (VTASM)

Taxiing Network Configuration
Development of a Simulation Model: VTASIM

- Existing microscopic simulation models for airport studies:
 - SIMMOD, TAAM (airfield and airspace analyses)
 - Airport Machine (airfield analysis)
 - RAMS (airspace analysis)
- These models are:
 - discrete-event simulation models,
 - less accurate in describing the aircraft movement,
 - do not describe communication process (ATC-pilot).
VTASIM is a Hybrid-type Simulation Model

- A discrete-event simulation model
 - Represents a system by changing the system status at the moments when an event occurs
- A discrete-time simulation model
 - Represents a system checking and changing the system status at every step size (dt).
- VTASIM is a hybrid-type simulation model
 - Movement: represented by discrete-time simulation model
 - Communication: represented by discrete-event simulation model
Entities and State Variables in VTASIM

Entities:

- Two types of controllers (i.e., local and ground controllers),
- Two types of flights (i.e., departing and arriving flights), and
- Facilities including gates, taxiways, runways, etc.

State Variables:

- Controllers: controlling state, next communication time,
- Flights: communication state, next communication time, movement state, next movement time, speed, acceleration, position, etc.,
- Gates, taxiways, runways: current flight(s)
State Diagram for Arriving Aircraft Movement

1. On Final
2. Communication
3. Received Landing Clearance
4. Flare
5. Free Rolling
6. Braking
7. Coasting
8. Exiting R/W

- No

9. Parked (at gate)
10. Taxing
11. Received Taxiing Clearance

- No

12. Area Holding
13. Waiting in Line (Gate Arrival Queue)
14. Waiting to Taxi
15. Communication
Ground Control Model Features

- Communication interactions between ATC controllers/data link and each aircraft is explicitly modeled
- Delay analysis. There are two types of delay:
 - Traffic delay due to the traffic congestion on taxiway/runway
 - Communication delay due to the controller/data link communications
- Dynamic aircraft-following logic
- Static and dynamic route guidance for taxing
- By applying dynamic guidance logic, more realistic and efficient routing is possible.
State Diagram for Communication (Voice Channel)

Start Communication
- Put this flight strip to progressing box.

Is controller busy?
- Yes: Wait Next Comm. (t0)
- No: Sending Request (t1) → Sending Confirm. (t4)

Sending Confirm. (t4) → Receiving Command (t3) → Wait Contact from Controller
- No (i.e., Delayed)
 - Received clear

Receiving Command (t3) → Ready to comm.

End Communication
State Diagram for Controller’s Flight Data Strips

Ground controller’s flight strip organization

Local controller’s flight strip organization
Algorithm: Dynamic Taxiing Route Plan

Considers time-dependent network loading

Employs an incremental time-dependent network assignment strategy

Based on time-dependent shortest path algorithm
Algorithm: Dynamic Taxiing Route Plan

Statically assigned path

Time-dependent assigned path
Aircraft Following Model

Basic equations of motion to characterize the aircraft taxiing following model

\[v_{t+\Delta t}^d = v^f \left(1 - \frac{H_j}{H_t} \right) \]

Speed equation of motion

\[a_{n+1}^{t+\Delta t} = \frac{(v_{t+1}^d - v_t)}{\Delta t} \]

Acceleration equation of motion
Conflict Detection and Resolution Model

Legend:
- **the current operation direction**
- **Expected arrival time to the common intersection (ET)**

- **F1**: First flight on this link (Need to check the potential collision)
- **F2**: Conflicting flights coming toward the common intersection
- **F3**: Second or later flights on this link (do follow the leading flight by car-following logic)

- **Current position of flight**
- **Start point of intersection**
- **Expected arrival time to the common intersection (ET)**

Diagram Notes:
- **15.6 (sec)**
- **20.8 (sec)**
- **30.7 (sec)**
Four Phases of the Landing Procedure

FL: Flare
FR: Free-rolling
BR: Braking
CO: Coasting

Touchdown Point
Exit point

Air Speed
Altitude

Distance
Runway
Exit

FL: Flare
FR: Free-rolling
BR: Braking
CO: Coasting
Example of Output File (1): Log File

Second-by-second statistics can be obtained in VTASIM

Time = 320.000

DEP_1 (4.27860, 7.23847)
readyToCommunicate
clearToTakeOff rolling
228.557 5.65931 2006 -> 2005
347.582 322.875 8907.85

DEP_2 (3.44770, 3.71363)
readyToCommunicate
clearToTaxi taxiingToDepQue
27.3409 0.000000 1031 -> 2018
782.058 727.237 3832.22

Aircraft ID and Position
Acft. COMM State
Acft. Permission
Acft. speed, accel. and link information
Example of Output File (2): Summary File

-- SUMMARY --
Flight (Departure DEP_1, B727-100, Gate 1, Runway 36)
Enters into the simulation at : 1 sec.
Taxiing Duration : 73 - 217
Taxiing Delay : 2.22827
Nominal Takeoff Time (= NTOT) : 186
Sequenced Takeoff Time (= STOT) : 268
Actual Takeoff Time (= ATOT) : 289
Runway Occupancy Time (= ROT) : 289 - 328
Sequenced Delay (= ATOT - STOT) : 21
Runway Delay (= ATOT - NTOT) : 103
Example of Output: Departure Profiles

![Graph showing departure profiles with labels for ROT, Minimum Separation, and Takeoff Distance.](image)

- Time (seconds) on the x-axis ranging from 0 to 600.
- Distance (ft) on the y-axis ranging from 0 to 12000.
- Key points labeled: ROT, Minimum Separation, Takeoff Distance.
Local Controller “Workload” Metric

Time (seconds)

Aircraft Under Control

0 200 400 600 800 1000 1200 1400 1600 1800

0 1 2 3 4 5 6 7 8 9 10

Utilization factor = 0.607
Delay Curves for Mixed Runway Operations

![Graph showing delay curves for mixed runway operations. The x-axis represents aircraft operations per hour, and the y-axis represents average aircraft delay (seconds). The graph includes data points for simulation and average delay, with error bars indicating variability.](image-url)
Sample Aircraft Delays Curves

Voice channel - three assignment techniques studied
Sample Delay Curves (datalink analysis)

Datalink active - three assignment techniques studied
Dynamic Construction Visualizer (DCV)

- General-purpose tool for 3D visualization of discrete-event and continuous simulation models
- Developed by Dr. J. Martinez and V. Kamat (Virginia Tech)
- Independent of simulation tools
- Processes log (trace) files to depict motion
- Uses 3D CAD models of simulation entities
- Language that merges together modeling and CAD tools to achieve dynamic visualization
The DCV Language

TIME 0;
CLASS Airfield Airfield.wrl;
CREATE TheAirfield Airfield;
PLACE TheAirfield AT (0,0,0);
TIME 6;
CLASS B747 B747.wrl;
CREATE NW56 B747;
PLACE NW56 ON TaxiToRunway;
Building DCV Files

- Files for actual modeled operations can be very long
- Not meant to be typed by humans
- Meant to be generated by simulation models as they run
- Practically any simulation model can produce DCV compatible trace files
 - VTASIM
 - SIMMOD
 - TAAM
 - RAMS, etc.
Tools and Implementation

- Microsoft Windows™ (98, NT, 2000)
- Visual C++ 6.0
- SGI Computer Graphics APIs (Libraries)
 - Cosmo3D
 - OpenGL Optimizer
Sample DCV Graphic User Interface
Acknowledgements

• The support of the Federal Aviation Administration (FAA) in the development of Air Traffic Management (ATM Agenda) models is gratefully acknowledged.

• The support of the National Science Foundation (NSF) in the development of the Dynamic Construction Visualizer is gratefully acknowledged.
Remarks about VTASIM

- The model characterizes aircraft movement at the microscopic level
 - Provides better insight of traffic dynamics around the airport taxiway-apron network
 - Provides better interaction between aircraft operating on runway and taxiway networks
- ATC-pilot voice or datalink exchanges are modelled explicitly
- With proper adaptations and calibration VTASIM could be employed as an ATC advisory system with aircraft predictive capabilities (sequencing is explicitly modeled)
Remarks about DCV

- The model serves as a good visualization complement to any discrete-event or discrete-time simulation model
- Provides powerful visualization tool could be adapted for real-time use if desired
- Excellent 3D graphics with open standards (OPEN GL API)
 - Portable
 - Easy to use
- A good example on how small projects at NEXTOR universities provide synergy to work being sponsored by FAA and other agencies
Final Remarks

- Fast-time model requirements are changing to keep up with changes in NAS procedures and automation
- Challenging ATC-pilot modeling requirements expected of future ATM concepts
- Planned ATC/ATM changing strategies associated with Free-Flight and automated ground control operations at airports would require radical changes into the logic of existing NAS simulation models in the long term
- The research models presented is a low level effort in the development of a new generation of tools to understand a critical part of NAS.