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Ground Delay Programs (GDPs)

» To balance arrival demand and capacity at the afflicted airport

- Transfer costly airborne delay to less expensive ground delay
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- Input parameters - Airport Capacity and Arrival Demand

»  Capacity and demand , both stochastic in nature



Demand Uncertainties

~» Three main sources of demand uncertainties
1 Flight Drifts,
1 Flight Cancellations, and
1 Pop-up Hights

= Combined Effects

1 Under-Utilization of the airport resources (slots)
1 Unpredictable arrival sequence
1 Increased airborne holding



Flight Cancellations

- Flight Cancellations without notices in advance, cause
“holes’ in the arrival sequence

~» Timed Out (TO) Cancellations almost always result in
slots being unused
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Pop-up Flights

- Any flight that arrived during a GDP and that first
appeared in the ADL after the GDP model time
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~»-  Pop-ups add to the arrival demand and displace the
actual arrival sequence



Flight Drifts

> Flight Drifts are results of :

1 CTD non-compliance, where ARTD >or < CTD
1 CTA non-compliance, where AETE > or < OETE
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=2 Net Drift = Ground Drift + Enroute Drift

*ARTA - Actual Runway Time of Arrival *CTA - Control Time of Arrival
*ARTD - Actual Runway Time of Departure *CTD - Control Time of Departure
*AETE - Actual Enroute Time *OETE - Origina Estimated Enroute Time



Modeling Demand Uncertainties

- Stochastic Mixed Integer Optimization (SM10O) Model
1 Incorporates only flight cancellations and pop-ups

1 Generates Optimal Planned Arrival Rates (PAARS) for any
GDP scenario

»- Simulation Model
1 Incorporates flight cancellations, pop-ups and drifts

1 Validates the SM10O model by generating Pareto Optimal
PAARSs for alarge set of scenarios




Detalls on SMIO Modé

= Objective Function : Minimize the expected airborne queue

> Variables: X a(kt)=1if PAAR=kintimeperiodt; else0

Y (k,j,t) : probability that at the end of time period “t” an airborne
gueue of size “j” existsand PAAR =k intime period “t”

= Main Input Parameters: AAR(t), Pey, Poop , and Utilization Parameter “¢&’

=2 Maln Constraints

1 Markovian Constraint : &, Y(k,j,t) =&, q(k,ij,b) Y(k,it-1),
where q(k,i,j,t) = Pr{i + number of arrivalsint - AAR(t) =j/ PAAR =k}
1 Utilization Constraint : Expected Number of unutilized dots £ e

»-  Outputs . Optimal PAARs and Optimal Expected Queue Size



Formulation of SMI1O Modd
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Details on Simulation Model
- Single-Server Queuing Model

~ Input Distributions
1 Geometric distribution for flight cancellations

1 Empirical distribution for drifts
1 Exponential distribution for pop-ups

= Performance Measures
1 Ground delay

1 Airborne delay
1 Utilization



Empirical Analysis of Drifts

Distribution of Ground Drrifts (1999 SFO)
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= Ground Drift = ARTD - CTD
= Mean is shifted to theright - more forward drifts




Empirical Analysis of Drifts (contd..)

Distribution of Enroute Drifts (1999 SFO)
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~» Enroute Drift = AETE - OETE
~» Actua Enroute Time less than expected

= Enroute Drifts confined to a small window



Empirical Analysis of Cancellations

Distribution of Cancellations (1999 SFO)
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»- Cancellations follow a geometric distribution
during GDP



Empirical Analysis of Pop-up Fights
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Results for SM1O Modél

~»  Capacity Scenario . (30,30,30,30,30,30,30) on 05/01/98 SFO
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Results for SMIO Model (contd.)
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Results for SSmulation Modél

" Capacity Scenario: (30,30,30,30,30,30)

2 Tested the scenarios for al PAARs In theinterva
[28 34]

~» Used Pareto Optimality with Airborne Delay and
Utilization as Objective functions

1 Pareto Optimality

A state A (aset of parameters) is said to be Pareto optimal, if there is no other
state B dominating the state with respect to a set of objective functions.

A state A dominatesastate B , if A isbetter than B in at |east one objective
function and not worse with respect to all other objective functions.



Results for Simulation M odel(contd.)

Utilization
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1 -(29,30,30,30,30,30)
2 -(32,30,30,30,30,30)
3 -(33,30,30,30,30,28)
4 -(33,30,30,30,30,29)
5 -(32,30,30,30,28,28)
6 -(33,30,28,30,30,29)
7 -(33,30,28,30,28,30)
8 -(33,30,28,30,28,29)
9 -(34,30,28,28,28,30)
10 - (34,30,28,29,28,29)
11 - (34,30,32,30,29,28)
12 - (34,28,28,32,28,32)
13 - (34,34,28,28,32,32)




Summary

Significant stochasticity in airport arrival demand

Demand Uncertainties lead to under-utilization, and
excessive airborne holding

Two models - SMIO and Simulation Model - are
developed

Models recommend policy changes in setting of
PAARS - substituting staggered patterns for flat
patterns



