

NAS Performance Models

Michael Ball

Yung Nguyen

Ravi Sankararaman

Paul Schonfeld

Luo Ying

University of Maryland

FAA Strategy Simulator: analyze impact on NAS of

- major policy initiatives/changes
- significant infrastructure changes
- macro-economic shifts/demand shifts
- changes in industry structure

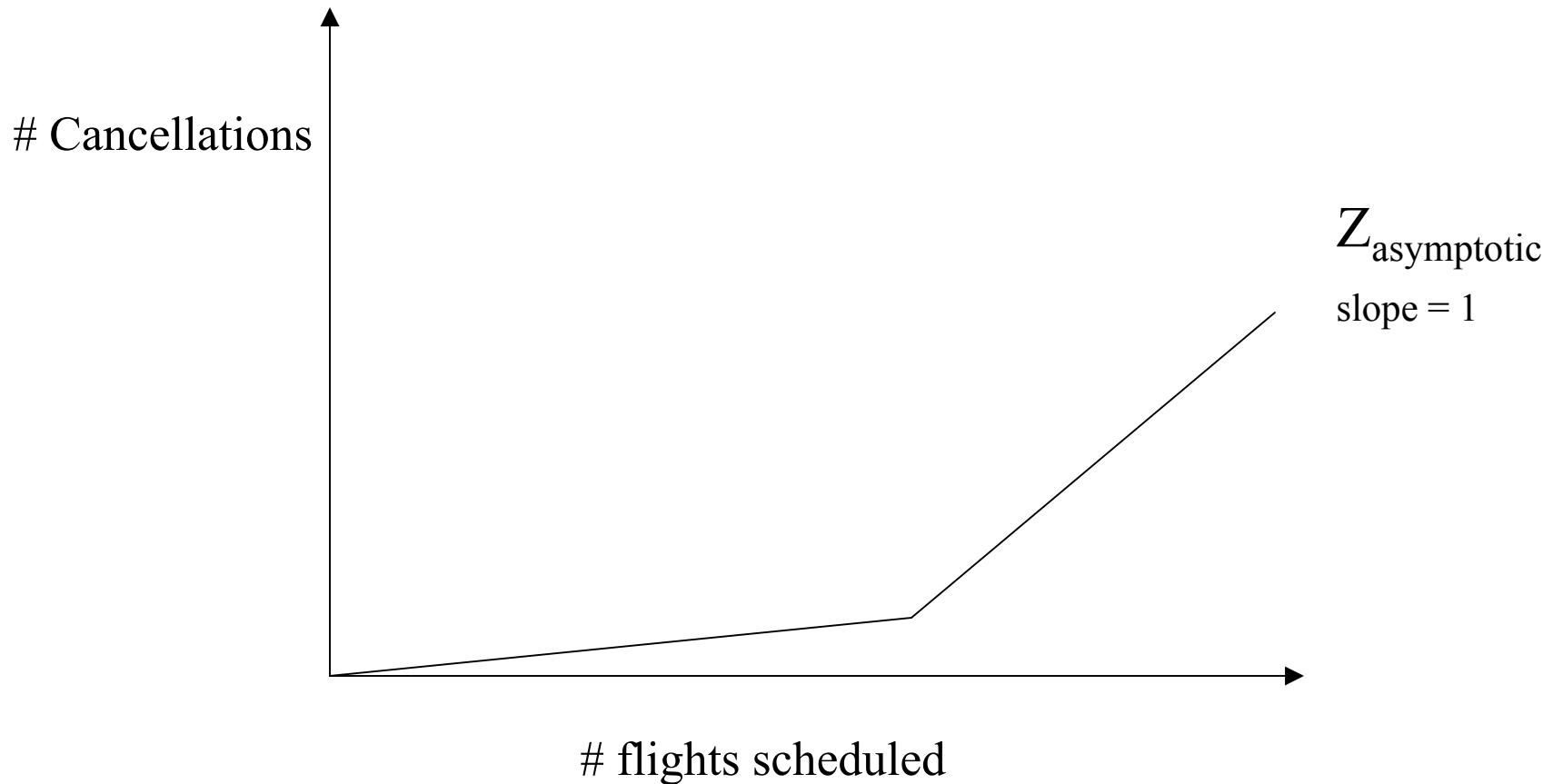
Need to model airline and other user behavior as well as basic NAS behavior

Challenge of performance modeling: predict NAS performance based on small number of key parameters

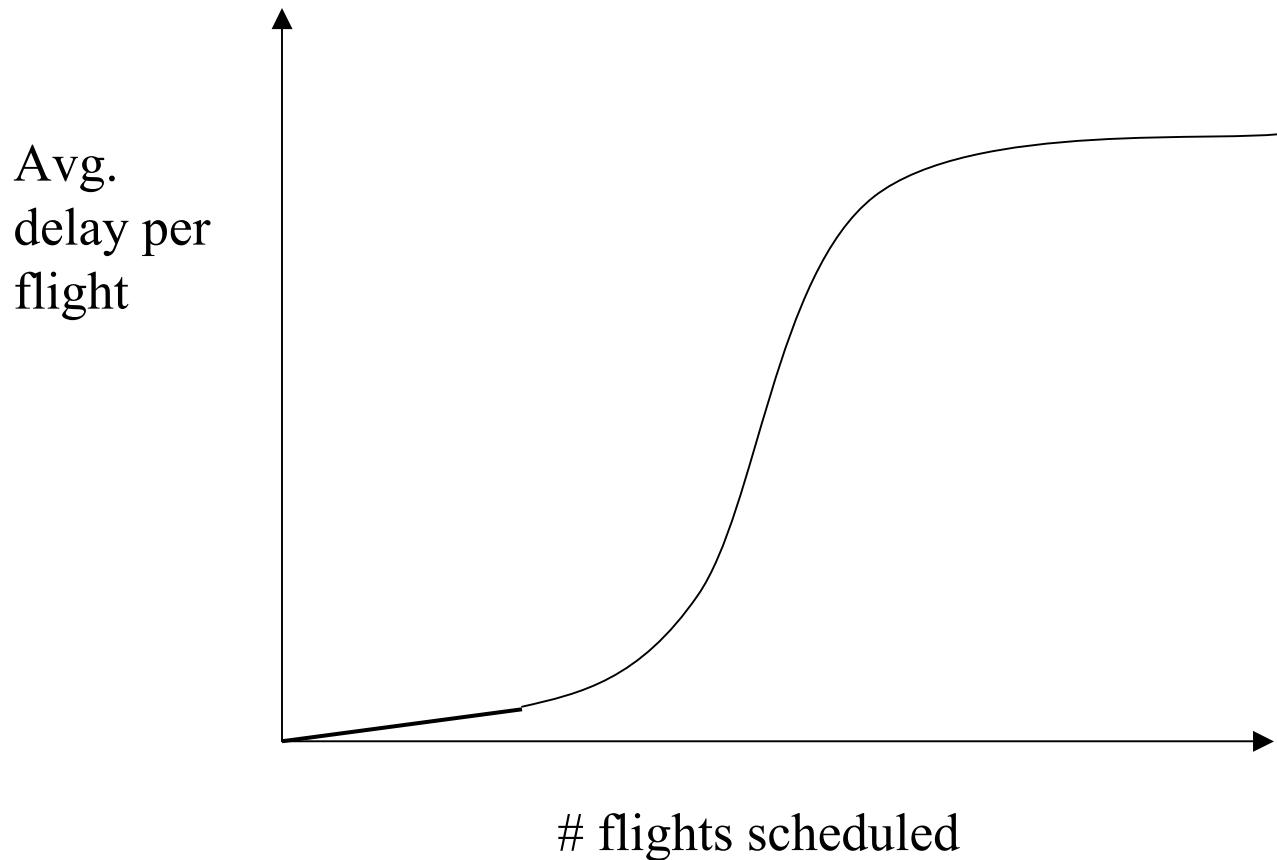
Performance Metrics

- ⌘ Average Delay per Flight (more refined flight delay distribution info); % of flights on time.
- ⌘ % of Flights Cancelled
- ⌘ NAS-wide OAG Service level metric
- ⌘ NAS-wide Actual Service level metric

Intuition: # Cancellations vs. # Flights Scheduled (capacity held constant)



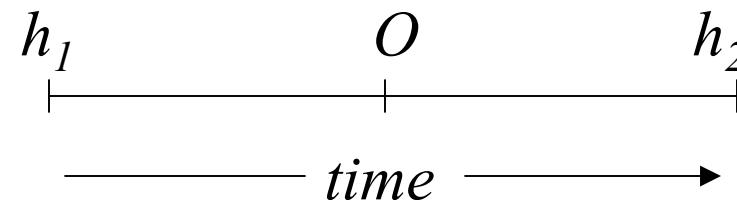
Intuition: Delay vs. # of Flights Scheduled (capacity held constant)



ρ - Measure of congestion around a scheduled operation

Assume an airport operation is either a flight departure or a flight arrival. Then for each operation, O , we compute ρ_o as follows:

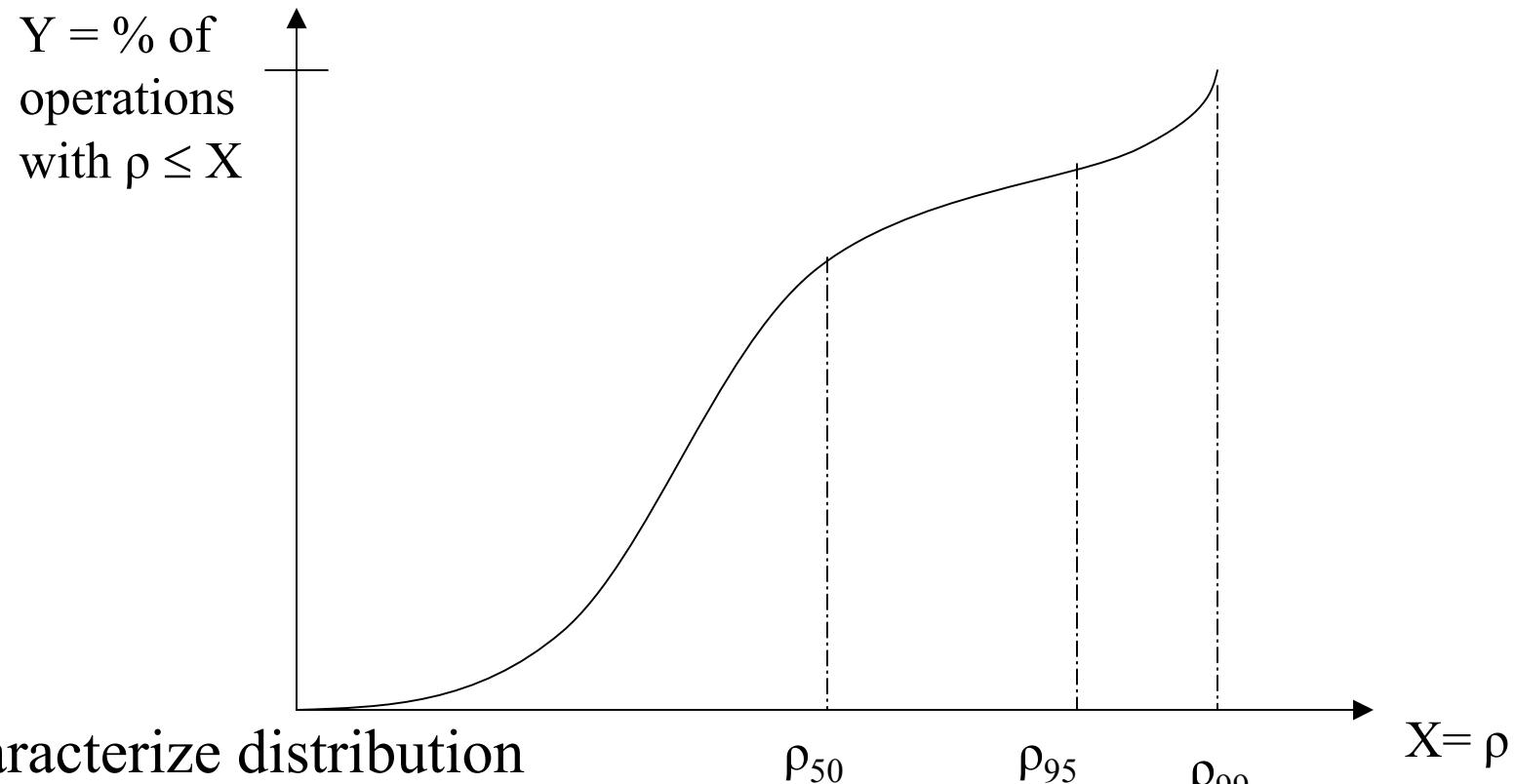
Consider the time interval, I , starting h_1 hours before O is scheduled and h_2 hours after O is scheduled



$$\rho_o = \left[\frac{\text{\# Operations scheduled during } I \text{ at } O \text{ 's airport}}{\text{Capacity(in \# operations) during } I \text{ at } O \text{ 's airport}} \right]$$

ρ_o is the queueing system utilization for an interval around O ; because of the way scheduling is done and also because of GDPs and other disruptions ρ_o could sometimes be > 1

Cumulative Distribution of ρ



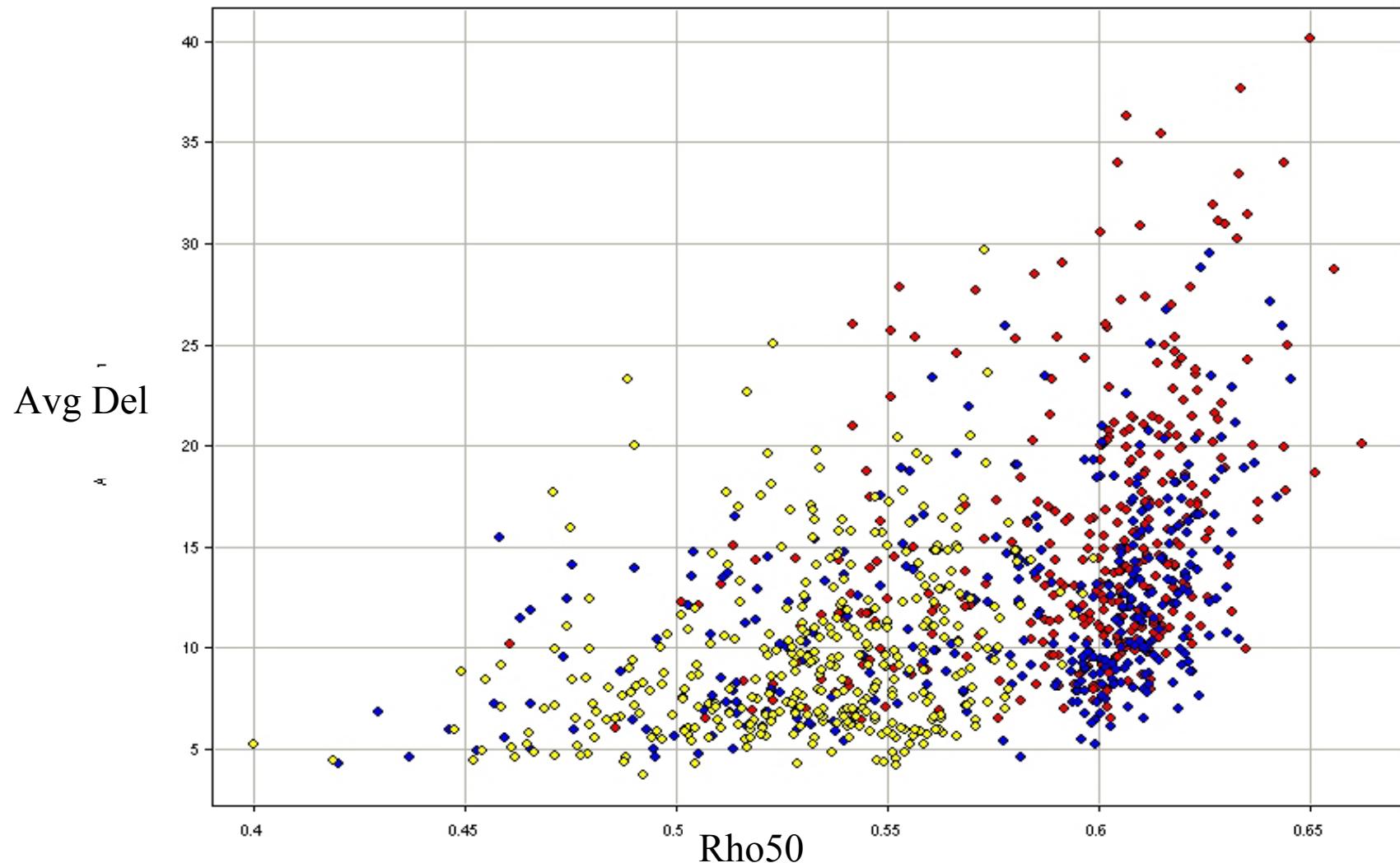
Characterize distribution
by a few parameters

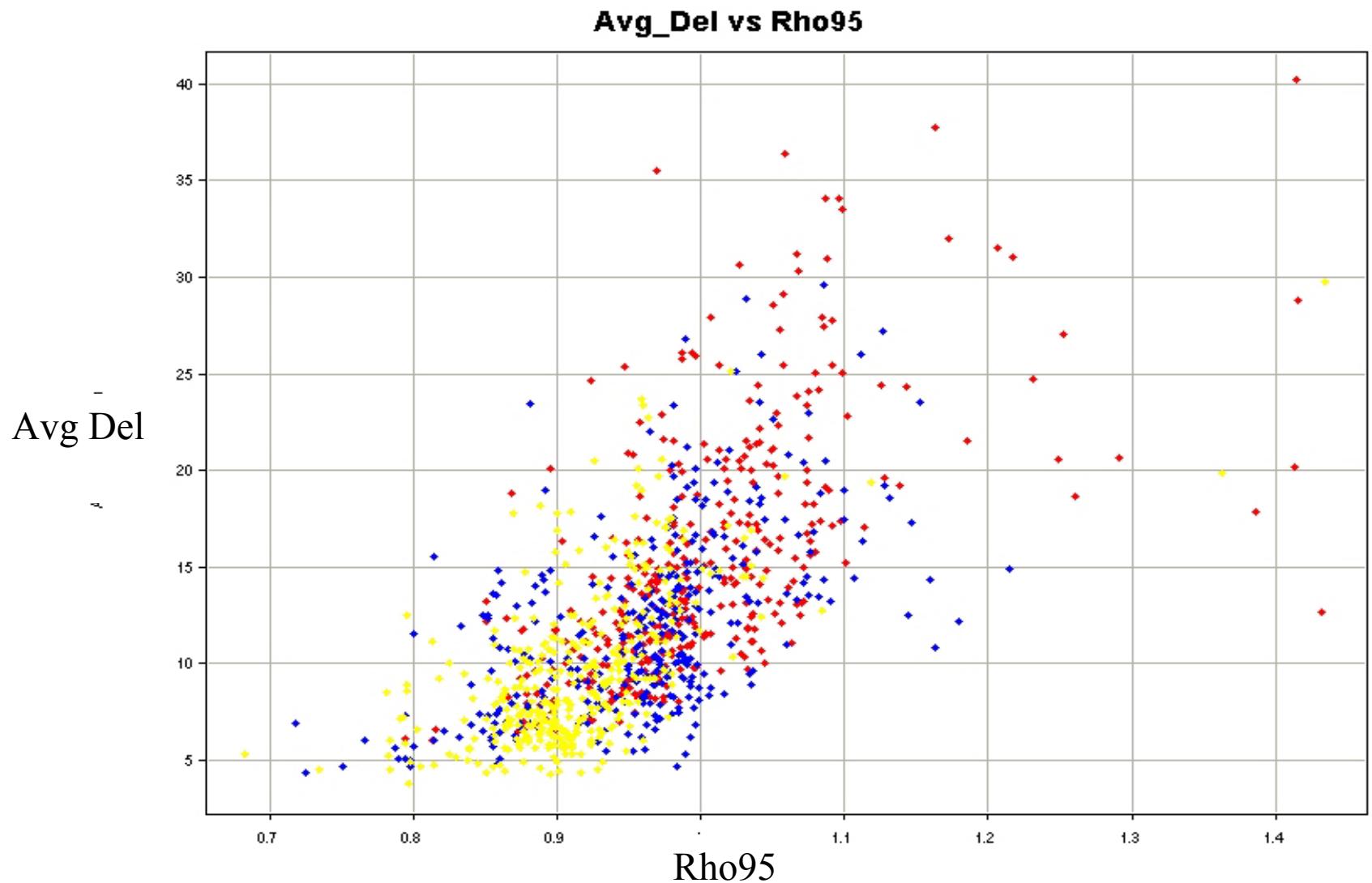
- Distribution of ρ (or any of ρ_{50} , ρ_{50} , ρ_{50}) could be calculated for a single airport on a single day, the NAS on a single day, the NAS over a week, etc.
- For a given day, ρ is determined by the OAG schedule and the airport capacity profile *for that day*. Airport capacity on a given day depends on VMC/IMC status (VMC = visual meteorological conditions, IMC = instrument meteorological conditions), runway configuration, etc. → ***ρ has potential to capture impact of weather and VMC/IMC capacity differences.***
- ***Modeling challenge:***
Capacity + demand → ρ → average flight delay, flight cancellation probability.

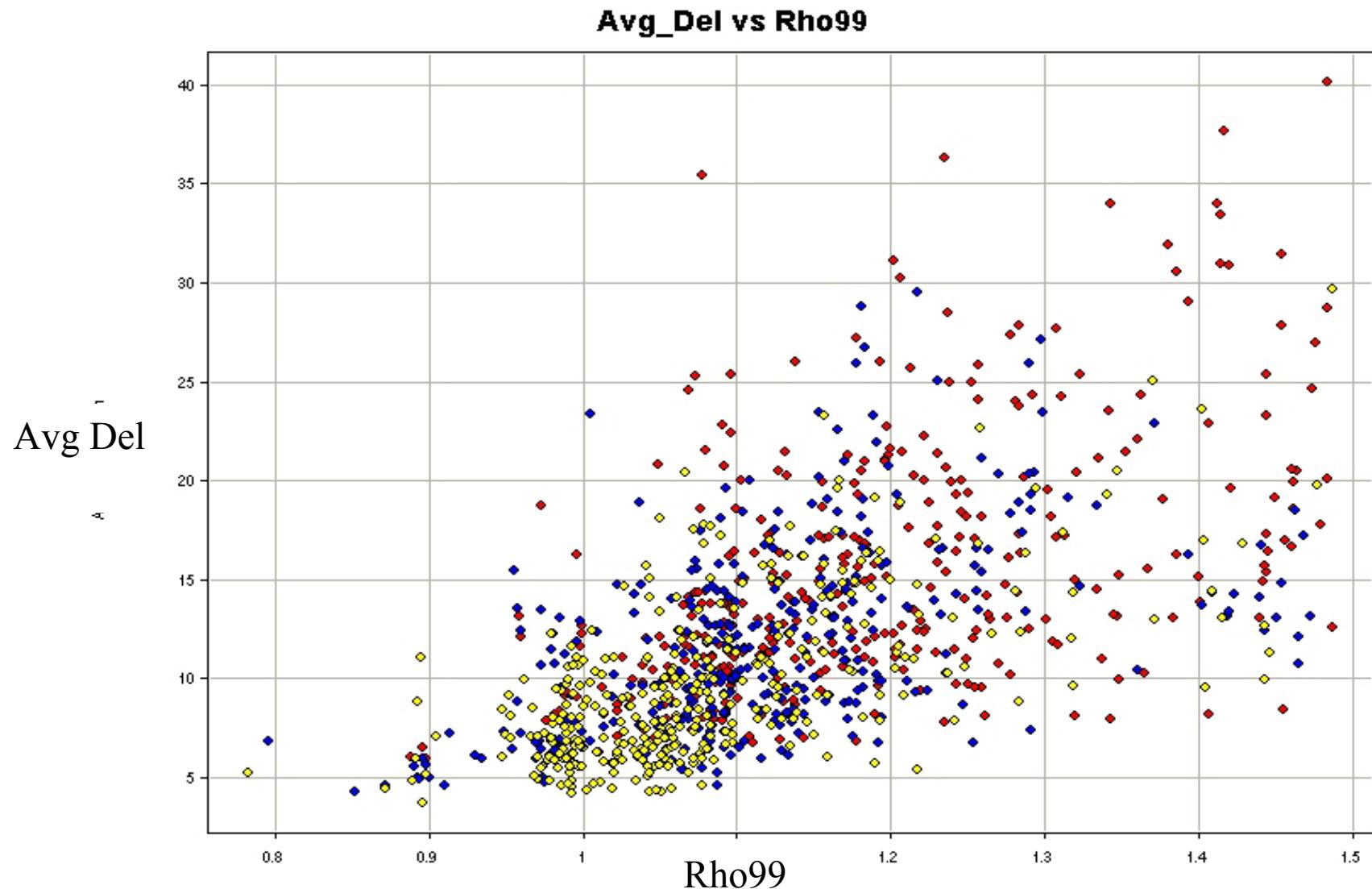
Data Analysis

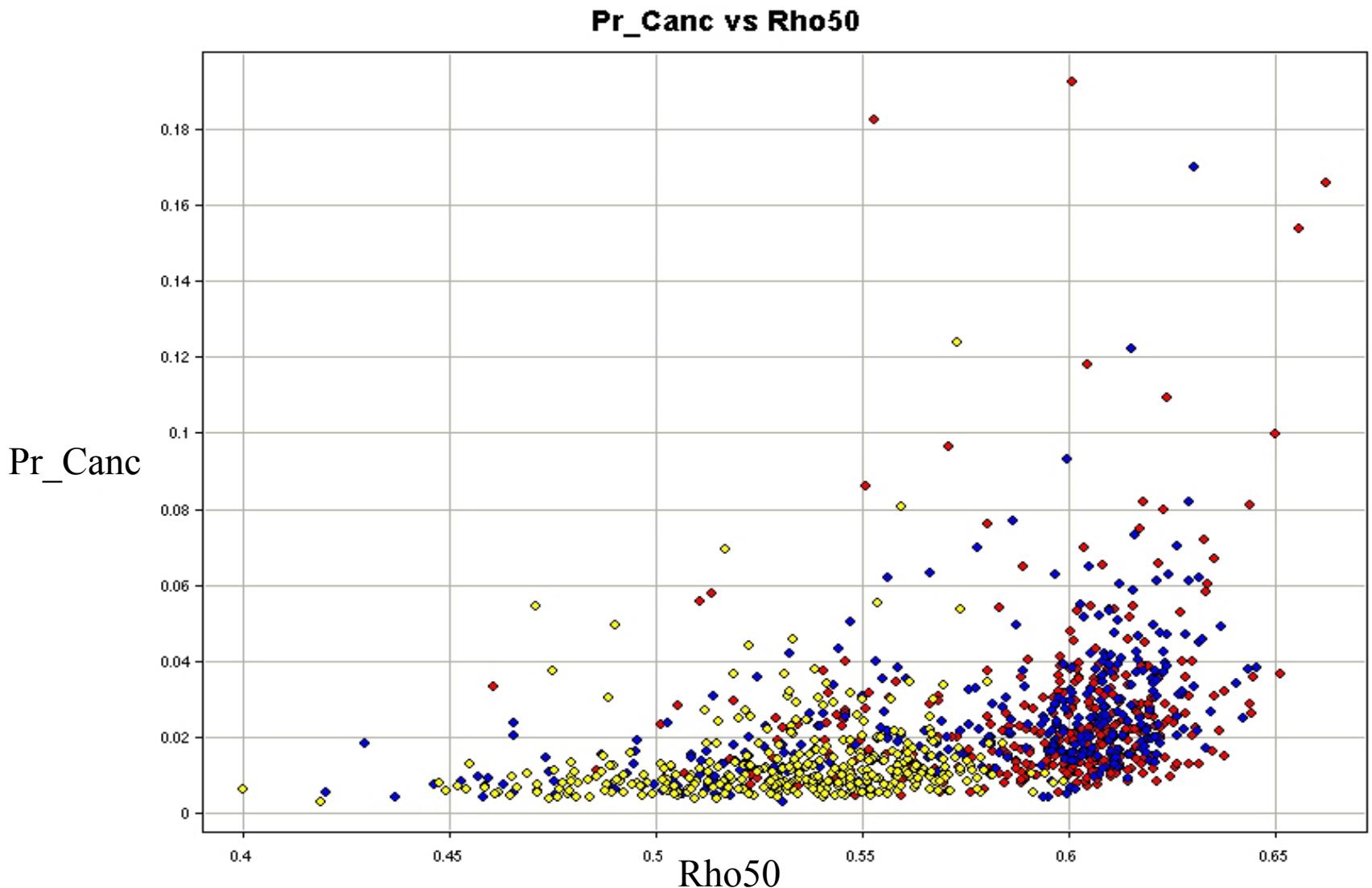
- For each day under consideration:
 - Set up 24 1-hour buckets at each airport
 - Determine number of scheduled operations (from OAG)
 - Determine capacity (max number of ops) – depends on IMC/VMC, runway config, etc
 - Calculate ρ for each bucket – assign this ρ value to each operation in bucket
- Create buckets based on ρ -values; create ρ distribution by combining data from all days and all airports under consideration.

Avg_Del vs Rho50

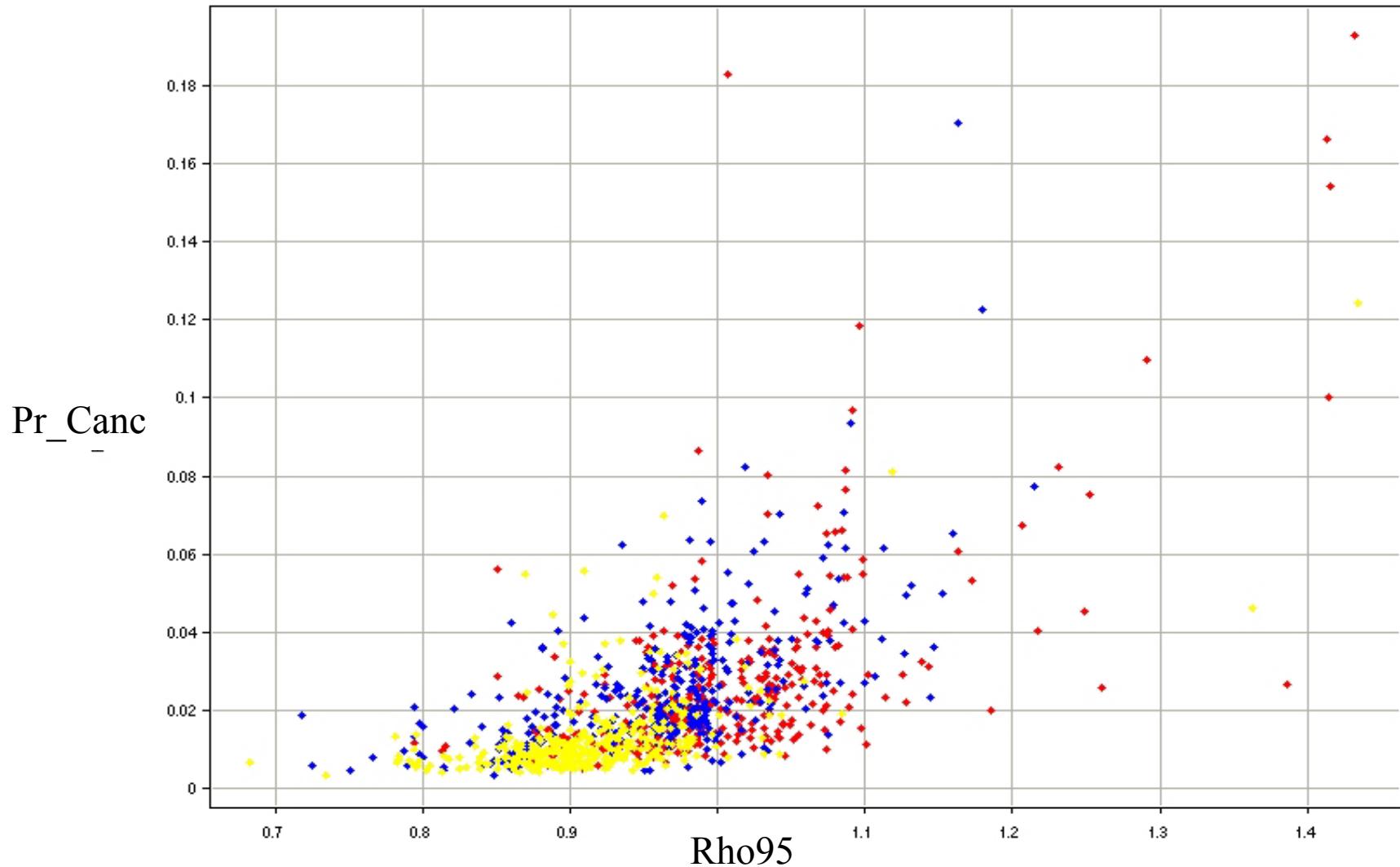


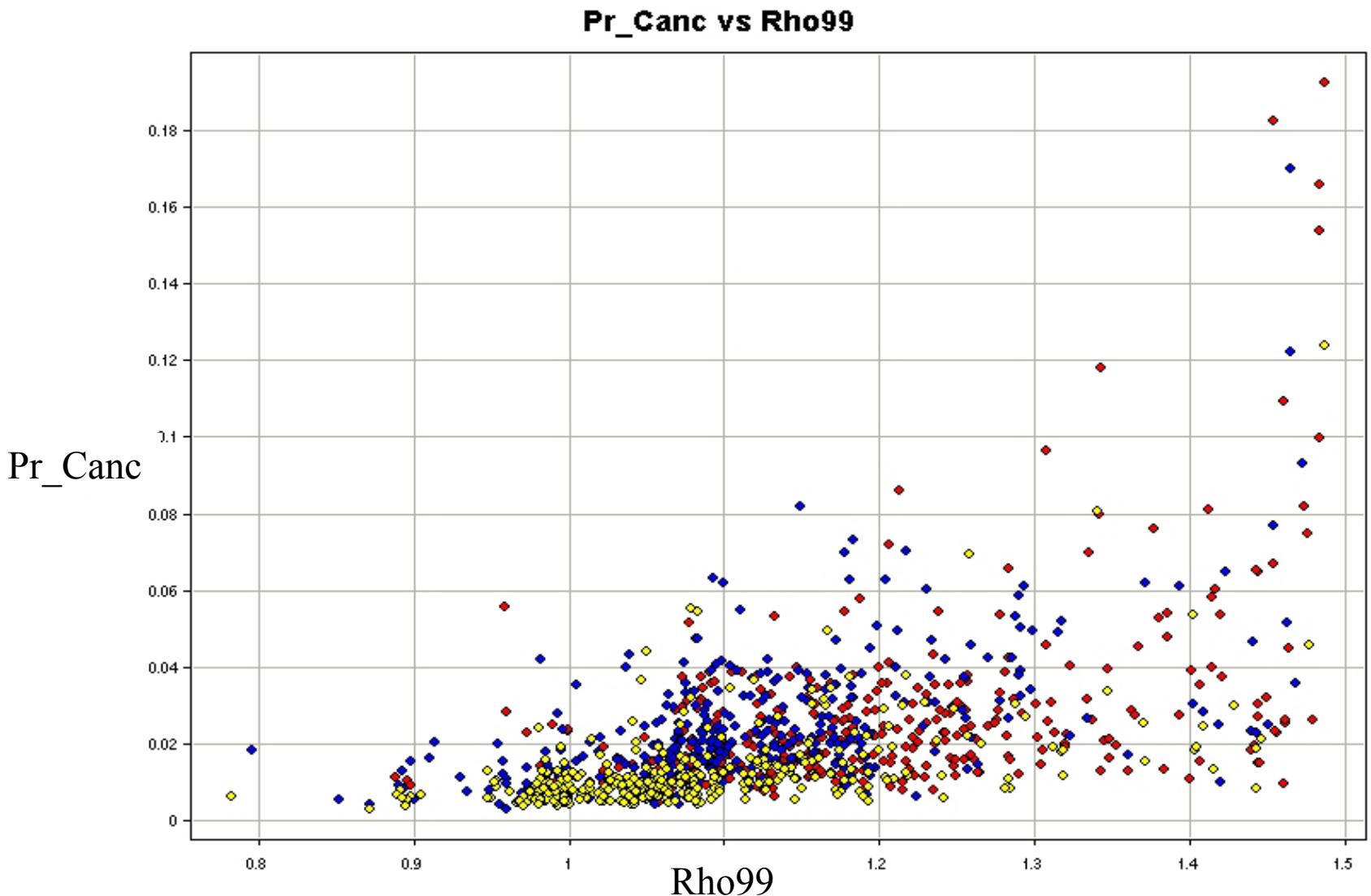




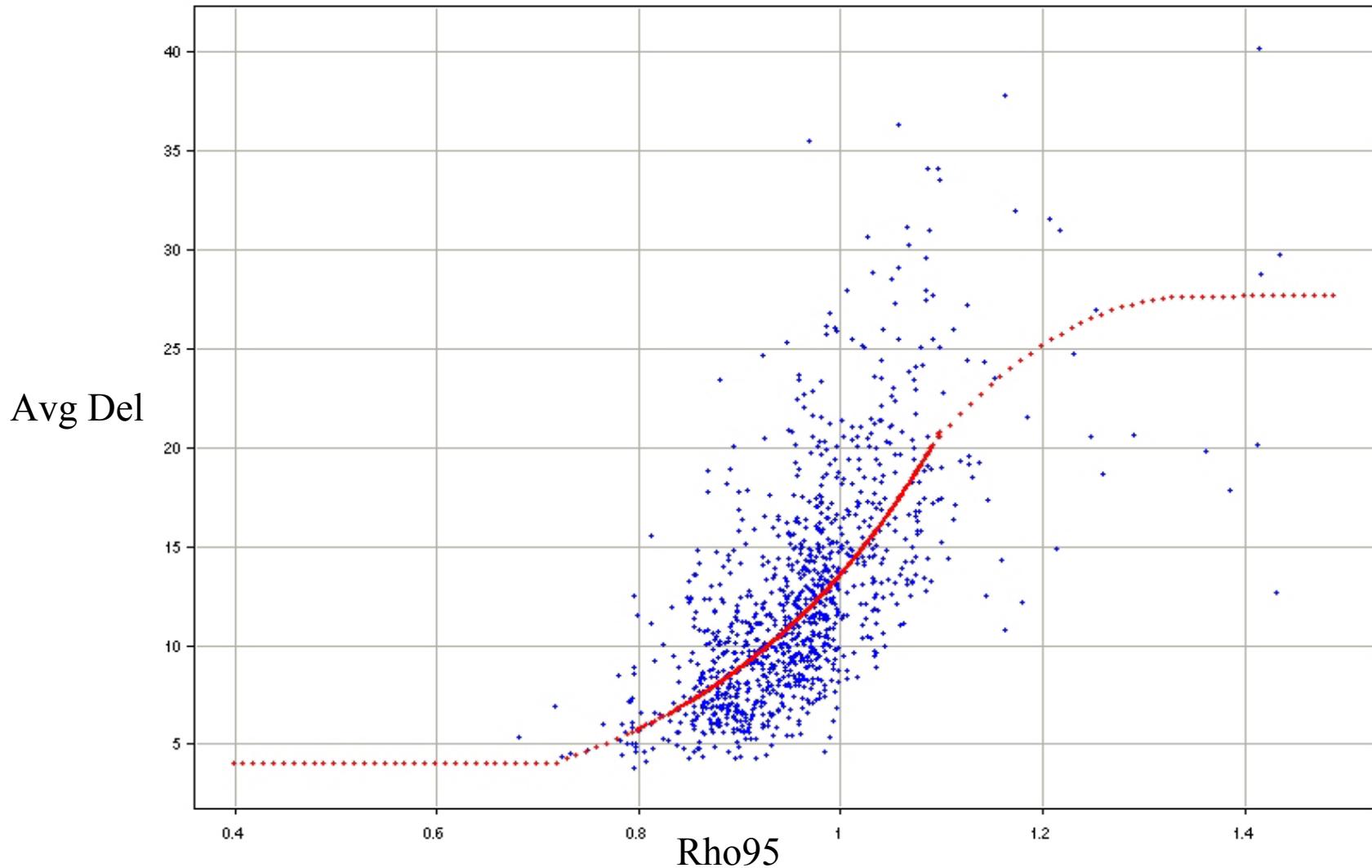


Pr_Canc vs Rho95

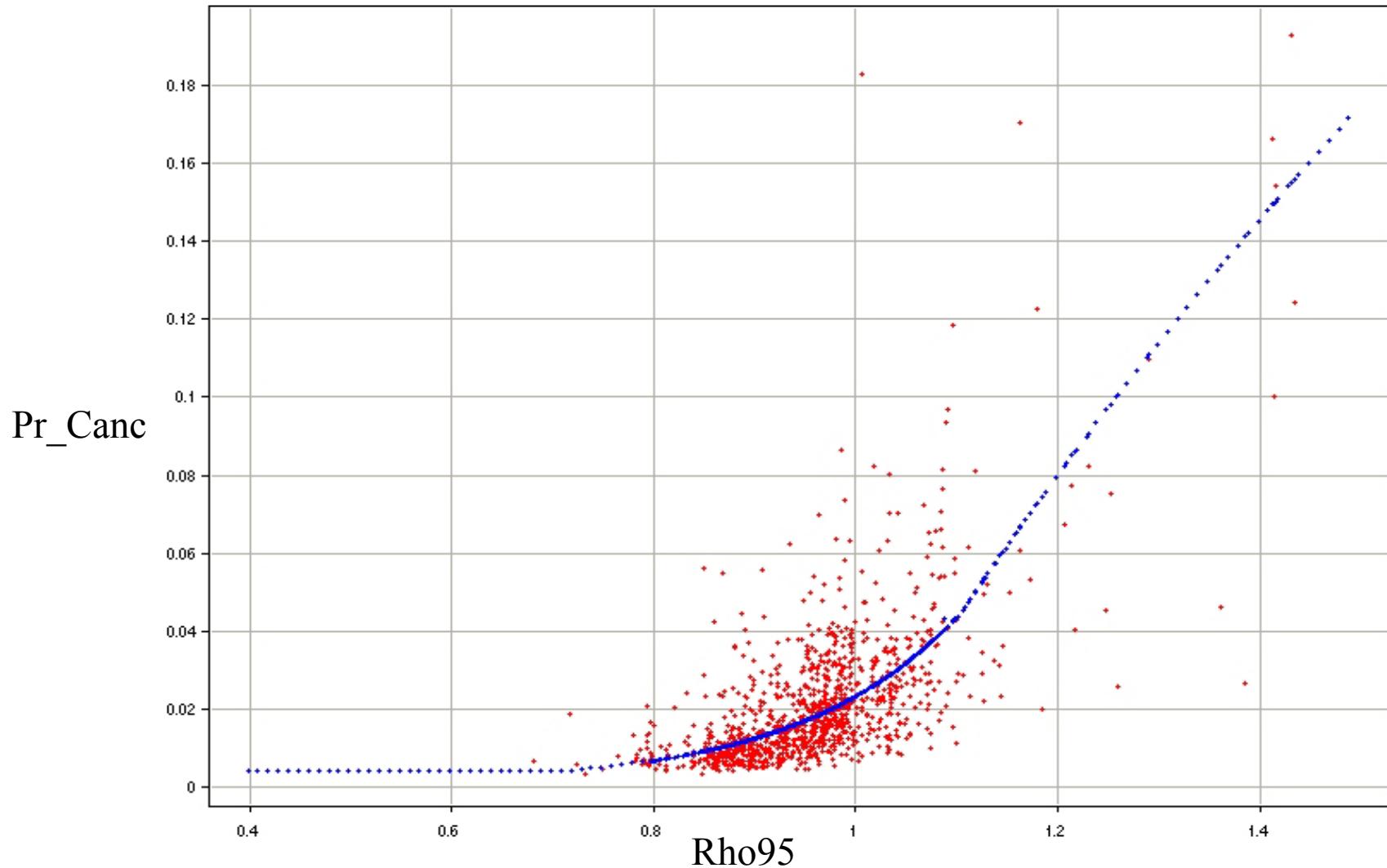




Avg Delay Equation



Probability Cancellation Equation



- *Average_Delay*

- $\text{Avg_Del} = 4.0048$ $0.4 \leq \text{Rho95} < 0.72$
- $\text{Avg_Del} = 0.178 * \text{EXP}(4.3247 * \text{Rho95})$ $0.72 \leq \text{Rho95} < 1.09$
- $\text{Avg_Del} = -115.41 * (\text{Rho95}^2) + 310.87 * \text{Rho95} - 181.8$
 $1.09 \leq \text{Rho95} \leq 1.35$
- $\text{Avg_Del} = 27.25 + \text{LN}(\text{Rho95})$ $1.36 \leq \text{Rho95} < 1.49$

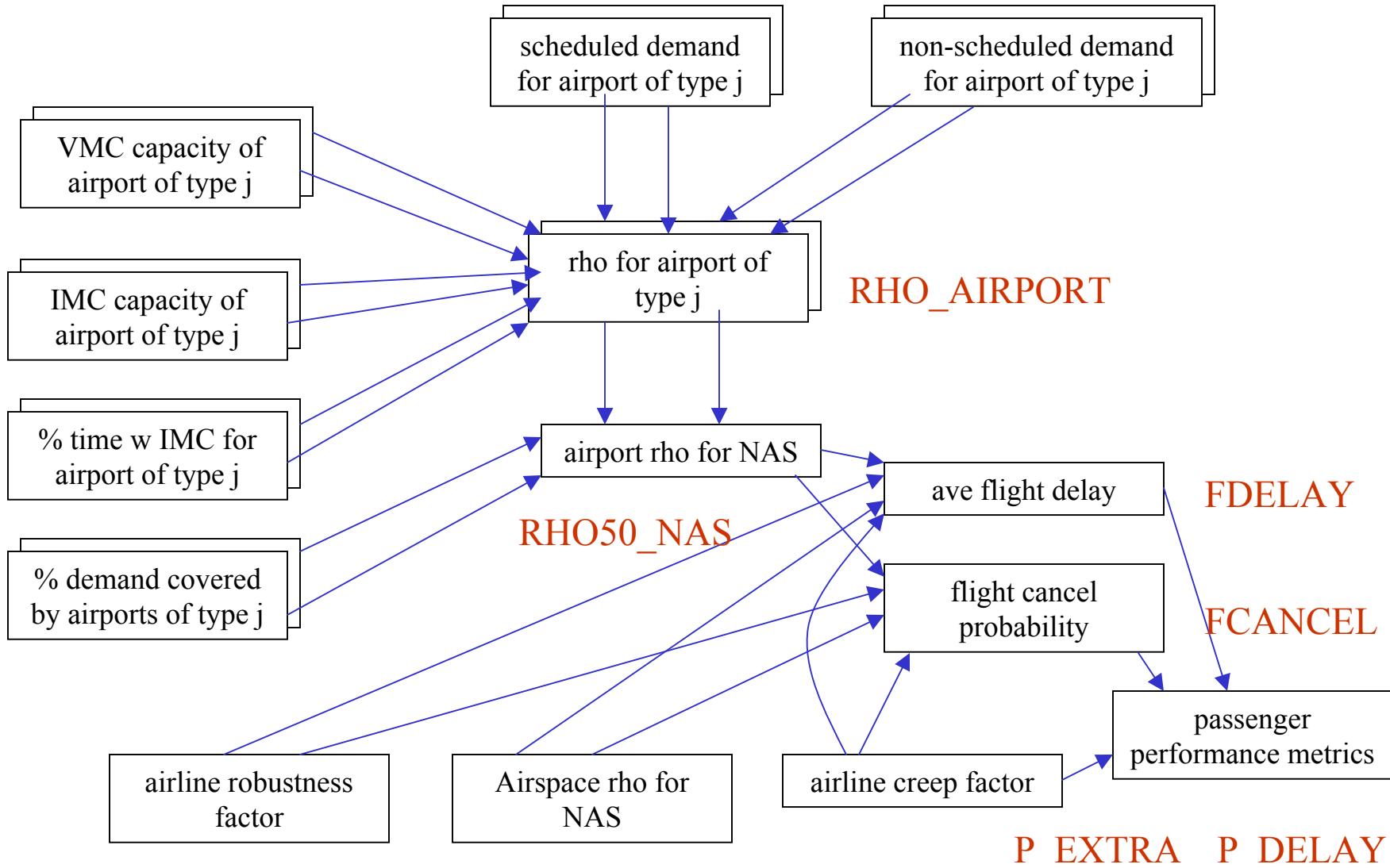
R – Square = 63.2%

- *Probability Cancellation*

- $\text{Pr_Cancel} = 0.0040$ $0.4 \leq \text{Rho95} < 0.72$
- $\text{Pr_Cancel} = 0.00004 * \text{EXP}(6.3406 * \text{Rho95})$ $0.72 \leq \text{Rho95} < 1.0$
- $\text{Pr_Cancel} = 0.425 * \text{LN}(\text{Rho95}) + 0.0015$ $1.0 \leq \text{Rho95} < 1.49$

R – Square = 84.6%

NAS Performance



Results of multiple regression for $\ln(\text{AvgDel_Flight_Min})$

Avg Delay (min)		Delay Cancellation (90)		Delay Cancellation (120)		Delay Cancellation (150)	
		Coeff	p-value	Coeff	p-value	Coeff	p-value
Constant	-1.1018	0.0000		-1.1356	0.0000	-1.1772	0.0000
Rho50	1.4293	0.0000		1.3588	0.0000	1.3569	0.0000
Rho95	1.7996	0.0000		1.9610	0.0000	2.0463	0.0000
Rho99	0.8615	0.0000		0.8823	0.0000	0.8857	0.0000
R-Square	46.29%		50.09%		51.38%		52.21%

Results of multiple regression for $\ln(\text{Pr_Canc})$

	Coefficient p-value	
Constant	-9.6486	0.0000
Rho50	2.3942	0.0000
Rho95	3.0201	0.0000
Rho99	1.1391	0.0000
R-Square	45.38%	

Ln(AvgDel_Flight_Min)

$$\begin{aligned}
 &= -0.741 + 1.36 \text{ Rho50} + 1.68 \text{ Rho95} + 0.835 \text{ Rho99} \\
 &\quad - 0.207 \text{ Month_Fall} - 0.128 \text{ Month_Spring} \\
 &\quad - 0.0682 \text{ Pre 9/11_N} - 0.127 \text{ Day_Mon} \\
 &\quad - 0.183 \text{ Day_Tue} - 0.146 \text{ Day_Wed}
 \end{aligned}$$

Predictor	Coeff	P-value
Constant	-0.7409	0
Rho50	1.3622	0
Rho95	1.6774	0
Rho99	0.8346	0
Month_Fall	-0.2071	0
Month_Spring	-0.1283	0
Pre 9/11	-0.0682	0.012
Day_Mon	-0.1271	0
Day_Tue	-0.1827	0
Day_Wed	-0.1457	0

R-Sq = 54.3%

Ln(Pr_Canc)

$$\begin{aligned}
 &= -6.95 - 1.98 \text{ Rho50} + 3.07 \text{ Rho95} + 1.13 \text{ Rho99} \\
 &\quad - 0.163 \text{ Month_Fall} - 0.229 \text{ Month_Spring} \\
 &\quad - 0.513 \text{ Pre 9/11_N} + 0.118 \text{ Day_Mon} \\
 &\quad + 0.217 \text{ Day_Tue} + 0.172 \text{ Day_Wed}
 \end{aligned}$$

Predictor	Coeff	p-value
Constant	-6.9512	0
Rho50	-1.981	0.001
Rho95	3.0686	0
Rho99	1.1257	0
Month_Fall	-0.1626	0
Month_Spring	-0.2291	0
Pre 9/11	-0.513	0
Day_Mon	0.1182	0.006
Day_Tue	0.2171	0
Day_Wed	0.1725	0

R-Sq = 54.9%

Based on Fridays from 2000, 2001, 2002

Results of multiple regression for $\ln(\text{AvgDel_Flight_Min})$

Avg Delay (min)		
	Coeff	p-value
Constant	-1.3918	0.0000
Rho50	1.9297	0.0270
Rho95	1.9451	0.0045
Rho99	0.8749	0.0116
Month_Fall	-0.1893	0.0016
Month_Spring	-0.0920	0.1100

Results of multiple regression for $\ln(\text{Pr_Canc})$

Pr_Cancellation		
	Coeff	p-value
Constant	-8.0055	0.0000
Rho95	2.9864	0.0021
Rho99	1.0671	0.0610
Pre9/11_N	-0.3436	0.0005
Month_Fall	-0.2207	0.0284
Month_Spring	-0.2474	0.0104

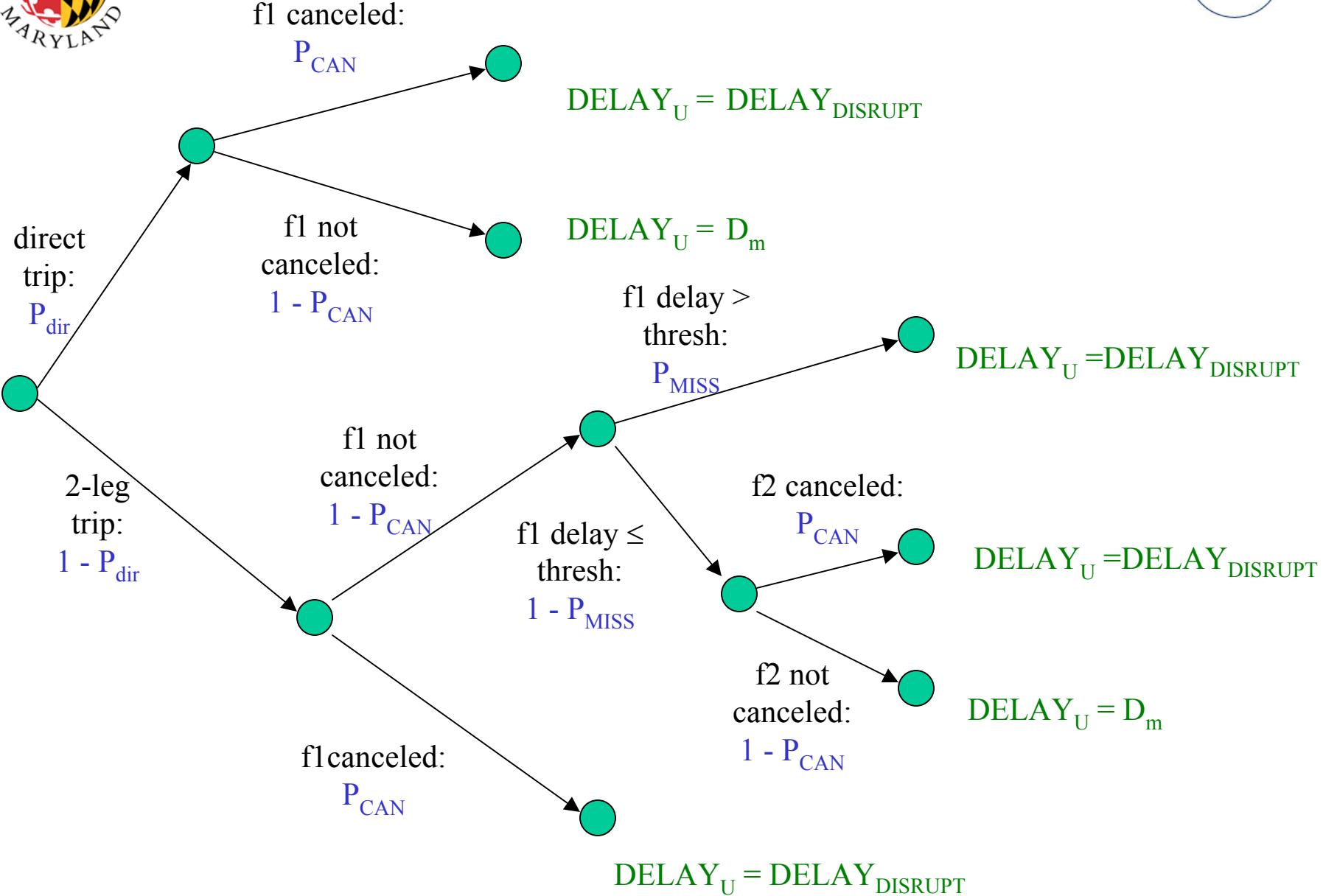
R-Square 62.97%

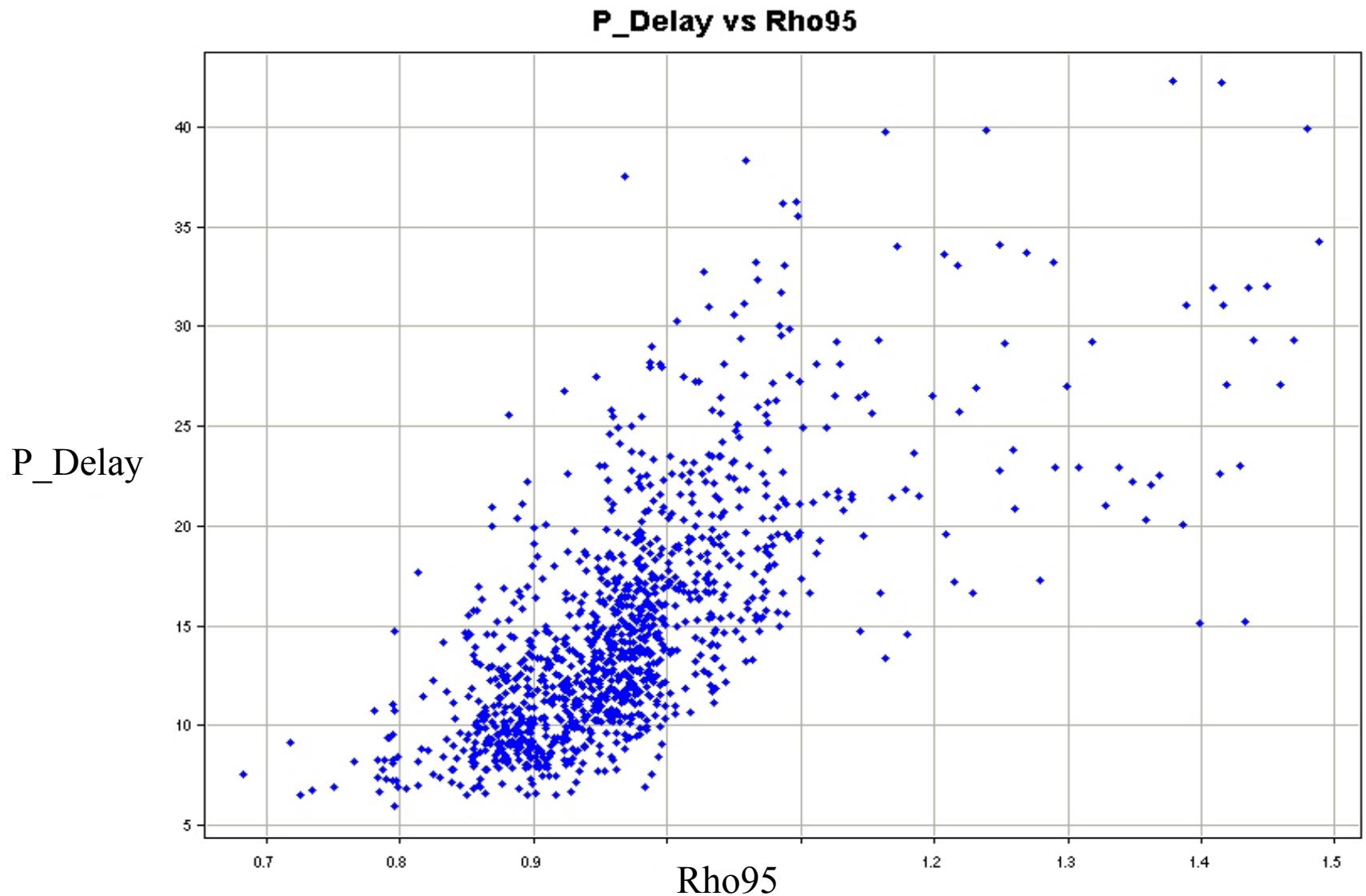
56.25%

Conclusions of Analysis

- Basic concepts are sound
- Rho95 is best single predictor
- Some variation remains to be characterized
- Airline behavior changes based on:
 - Load factor on that day, e.g. very high loads → fewer cancellations
 - Day-of-week

Passenger Delay Metric





Model Features

Track changes in NAS performance as a function of:

- Changes in airport infrastructure
- Changes in demand
- Changes in weather or ability of technology to adapt to weather, e.g. (VMC cap)/(IMC cap)
- Technology improvements that imply capacity enhancements

On-Going Work

- Add independent variables, etc to achieve “best” model
- Create “best” model compatible with Vensim (focus this summer)
- Specific issues to address:
 - Control variable that drives cancellation and delay models
 - Daily → yearly model
 - Airspace effects
 - Refined passenger model
 - GA effect
 - Airport-specific effects (delay → airports; airports → delay)
 - Delay distribution information