

Feedback Models of System Transition

Prof. R. John Hansman
(in collaboration with, Aleksandra Mozdzanowska, Prof Annalisa Weigel, and Dr. Karen Marais)

MIT International Center for Air Transportation

rjhans@mit.edu

National Air Transportation System (NAS)

• Example of a complex adaptive system evolved over 70 years

Global Air Transportation System (GAS)

Global Air Transportation System (GAS)

- Multiple Interacting Subsystems
- •Regional and Global Evolution Dynamics, Phasing, Harmonization

Traffic Source: Sage Analysis courtesy Prof Ian Waitz

Simple Feedback Model of System Adaptation

Transition Barriers

- 24/7 Operating System
- Competing Stakeholder Objectives
 - Reversion to the "Status Quo"
 - Labor Concerns
- Safety Considerations
 - Off Nominal Conditions Drive System Acceptability
 - Certification
 - Human-Automation Trades
 - Safety Veto
- Technical Maturity (TRL X)
- Equipage
 - Critical Mass
- Resource Limitations
 - Operating vs Modernization Investments
 - Competing National Objectives

Predictive, Reactive, Catalytic Transitions Safety vs Capacity Drivers

Event Driven Transitions

- Safety Transition Examples
 - Grand Canyon (1955) > Positive Radar Control
 - Los Cerritos (1986) > TCAS

Hull Loss and/or Fatal accidents - Worldwide Commercial Jet Fleet - 1959 through 2004

Source: Boeing Statistical Abstract

Capacity Driven Transitions eg LGA 2000

SFO Origin Jul 2000 TaxiOut Daily Avg per Hour

Increasing System Capacity vs Demand Management

- Demand Management Fast Implementation
 - 2001 Delays > LGA Demand Management
 - 2004 Delays > ORD Demand Management

Role of Research and Development to Provide Capability Options

Role of Transformative System Concepts

Role of Transformative System Concepts Stepwise Transitions and Configuration Control

Transition Barriers

- 24/7 Operating System
- Competing Stakeholder Objectives
 - Reversion to the "Status Quo"
 - Labor Concerns
- Safety Considerations
 - Off Nominal Conditions Drive System Acceptability
 - Certification
 - Human-Automation Trades
 - Safety Veto
- Technical Maturity (TRL X)
- Equipage
 - Critical Mass
- Resource Limitations
 - Operating vs Modernization Investments
 - Competing National Objectives

Multi-Stakeholder Considerations

Value Distribution

 How are costs and benefits distributed between stakeholders?

Time-phased Value Distribution

Critical Mass for User Equipage

Incentivization or Leveraging Approaches

Early Benefit Incentivization eg Airspace Access, RVSM

Resource Issues

Aviation community responsible for adaptive change. We must also anticipate catalytic events and be prepared when the public awareness force transformative change.

Must collaborate and consider the Global Air Transportation System in System Transitions

