

NAS Infrastructure Modernization: A common theme to Volpe's aviation research program

Nelson Keeler Director, Office of Aviation Programs Volpe National Transportation Systems Center

Modernized Concept for Arrivals: Continuous Descent Approach (CDA)

What is a CDA?

- "Minimum Thrust" approach on arrival
- Minimize/eliminate level segments on arrival
 - Reduces thrust increases
 - Reduces use of speed brakes
 - May increase altitude above population in places
 - Lower noise received on ground
 - Fewer Local Air Quality impacts

Relationship to NGATS:

• "Create new analytical tools to understand better the relationship between noise and emissions, the different types of emissions, and the costs and benefits of different policies and actions"

Potential CDA Benefits

- Noise •
- Emissions
 - Local Air Quality
 - From Top of Descent
- Fuel burn

Height

the OLPE cegiter ()

Volpe's Role on CDA

- Aviation Environmental Design Tool (AEDT) Volpe Lead Developer
 - Development of single tool capable of analyzing both noise and emissions impacts
 - Algorithm development to understand implications of CDAs
 - Modeling demonstration analysis for ICAO Committee on Environmental Protection (CAEP)
- Coordination with FAA PARTNER Center of Excellence - Tests have shown up to:
 - 6 dBA noise reduction
 - 30 less NOx emitted
 - 500 lbs less fuel used

Goals of Traffic Flow Management (TFM) Tech Refresh

- Replace legacy Y2K infrastructure with up to date technology to reduce costs and increase functionality
- Scope: TFM Hubsite (Volpe), Disaster Recovery site (FAA Tech Center), and 80 FAA field sites.
- Timeframe: fall 2004 spring 2005
- Results:
 - New HW and training to all sites
 - TFM HW maintenance reduced \$1M/year
 - Order of magniture improvement in HW speed
 - Linux OS replaces proprietary Unix OS
 - Noticeable application response time benefit to users
 - New functionality to reduce congestion is now achievable

TFM Hardware Utilization before and after Tech Refresh

Benefits of Tech Refresh on Monitor Alert transmission times

TMD Timeline

□ TDB □ TMSCON □ ASP □ FTP □ DACS/TSD

Seconds After The Minute

Enhanced FAA Safety Metrics

- Background: FAA wanted a more objective method of categorizing the severity of runway incursions.
- Volpe developed a computer model that takes into account the: conflict configuration, closest proximity between aircraft, visibility, avoidance maneuvers executed, and other factors to categorize the severity of the incursion.

Enhanced Safety Metrics -Ground

 This Runway Incursion Severity Classification (RISC) model is currently being validated by the FAA and other countries and is under consideration at ICAO as a tool for standardized ratings of runway incursions.

Runway Incursion Severity Model

DAY

NIGHT

From tabled worst severities S for visibility, communication and avoidance maneuver factors, given the incursion scenario and closest proximity, <u>RVR/VISIBILITY/CEILING FACTOR</u>

Scenaro # 48a- One takeoff aircraft												
One aircraft or vehicle enters runway with other aircraft on takeoff roll												
			ALL BEST CASE EXC	CEPT FOR WORST CASE OF	PRIMARY FACTOR							
CLOSEST												
HORIZONTAL	COMBINED	COMBINED	Visibility/	Information	Avoidance							
PROXIMITY	BEST CASE	WORST CASE	RVR/Ceiling	Comm.	manuever							
100	A =4	A =4										
500	C =2	A =4	B+ =3.3	B+ =3.3	A- =3.7							
1000	D =1	B =3	C+ =2.3	C+ =2.3	B- =2.7							
2500	D =1	D =1										

		CEILING			
	RVR or VISIBILITY	> 1000 ft.	500 ft.	200 ft.	100 ft.
	> 3 mi.	0	1	3	10
	1 mi. = 6000 ft.	5	5	5	10
	3/4 mi. or 4500 ft.	8	8	8	10
	1/2 mi. or 3000 ft.	10	10	10	10
	1/4 mi. or 1500 ft.	10	10	10	10
г	RVR or VISIBILITY				
	> 3 mi.	3	4	5	10
	1 mi. = 6000 ft.	8	8	8	10
	3/4 mi. or 4500 ft.	10	10	10	10
	1/2 mi. or 3000 ft.	10	10	10	10
	1/4 mi. or 1500 ft.	10	10	10	10

objective data for a particular incursion event then can determine weightings P for each factor, e.g. visibility (see above right) and then a vector severity S^* is determined by

nter 2

$$\begin{split} S^* &= S_b + P_1(S_1 - S_b) \\ &+ \left[\sum_{i \ = 2 \ \text{to} \ N} \ P_i^2 \left(S_i - 1 \right)^2 \middle/ \sum_{i \ = 2 \ \text{to} \ N} \ (S_i - 1)^2 \right]^{0.5} \ (S_w - S_1) \end{split}$$

6/16/2006

Severity of Wake Vortex Encounter

Leading a/c	LARGE				Fol	lowi	ng a	ircra	ft: H	EAV	Y		B75	7				-	LAF	RGE					SM.	ALL		
Trailing a/c	SMALL																											
h-separation	4		Leading	h (ft.) below	Est	ima	ted s	sepa	ratio	n, nr	Est	ima	ted s	epa	ratio	n, n	Est	tima	ted s	sepa	ratio	n, n	Est	imate	ed s€	epara	atior	n, nm
v-separation	400		aircraft	glideslope	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
				0	Α	В	С	С	С	С	А	В	С	С	С	С	Α	В	С	С	С	С	Α	В	С	С	С	С
List of sizes:			HEAVY	50	Α	Α	В	С	С	С	Α	Α	В	С	С	С	Α	Α	В	С	С	С	Α	Α	В	С	С	С
HEAVY				100	Α	Α	В	С	С	С	Α	Α	В	С	С	С	Α	Α	Α	В	С	С	Α	Α	Α	Α	В	С
B757				200	Α	Α	В	С	С	С	А	Α	В	С	С	С	Α	Α	Α	В	С	С	Α	Α	Α	Α	В	С
LARGE				300	Α	Α	В	С	С	С	Α	Α	В	С	С	С	Α	Α	Α	В	С	С	Α	Α	Α	Α	В	С
SMALL				400	Α	Α	В	С	С	С	А	Α	В	С	С	С	Α	Α	Α	В	С	С	Α	Α	Α	Α	В	С
				500		Α	В	С	С	С		Α	В	С	С	С		Α	Α	В	С	С		Α	Α	Α	В	С
column	4			600			В	С	С	С			В	С	С	С			Α	В	С	С			Α	Α	В	С
row	6			700			В	С	С	С			В	С	С	С			Α	В	С	С			Α	Α	В	С
				800				С	С	С				С	С	С				В	С	С				Α	В	С
table	LARGE-S	SMALL		900					С	С					С	С					С	С					В	С
				1000						С						С						С						С
Lead HEAVY	NA			0	Α	В	С	С	С	С	А	В	С	С	С	С	Α	В	С	С	С	С	Α	В	С	С	С	
Lead B757	NA		B757	50	Α	Α	В	С	С	С	А	Α	В	С	С	С	Α	Α	В	С	С	С	А	Α	В	С	С	С
Lead LARGE	С			100	Α	Α	В	С	С	С	А	Α	В	С	С	С	Α	Α	В	С	С	С	А	Α	A	В	С	С
				200	Α	Α	В	С	С	С	А	Α	В	С	С	С	Α	Α	В	С	С	С	Α	Α	Α	В	С	С
Severity	С			300	Α	Α	В	С	С	С	А	Α	В	С	С	С	Α	Α	В	С	С	С	Α	Α	Α	В	С	С
				400	Α	A	В	С	С	С	А	Α	В	С	С	С	А	A	В	С	С	C	А	Α	A	В	С	С
				500		A	В	С	С	С		Α	В	С	С	С		A	В	С	С	С		Α	Α	В	С	С
				600			В	С	С	С			В	С	С	С			В	С	С	C			A	В	С	С
				700			В	С	С	С			В	С	С	С			В	С	С	С			Α	В	С	С
				800				С	С	С				С	С	С				С	С	С				В	С	С
				900					С	С					С	С					С	С					С	С
				1000						С						С						С						С
				0													Α	В	С	С	С	С	Α	В	С	С	С	С
			LARGE	50													А	В	С	С	С	С	Α	Α	В	С	С	С
				100													А	В	С	С	С	С	Α	Α	В	С	С	С
				200													А	В	С	С	С	С	Α	Α	В	С	С	С
				300													А	В	С	С	С	С	А	Α	В	С	С	С
				400														В	С	С	С	С		Α	В	С	С	С
				500														В	С	С	С	С		Α	В	С	С	С
				600															С	С	С	С			В	С	С	С
				700																С	С	С				С	С	С
				800																	С	С					С	С
				900																		С						С
				1000																								

6/16/2006

Enhanced Safety Metrics – Radar Environments

 Volpe is now developing metrics to categorize the severity of losses of standard separation in the radar environments (ARTCC and TRACON). Metrics are being designed to reflect the: proximity to collision, degree of the loss of required separation, severity of the operational error that resulted in the loss of standard separation.

Airport Surface Detection Equipment (ASDE-X)

- New-generation airport surface surveillance
 System
- Two sensor subsystems
 - Primary radar
 - Beacon multilateration
- Volpe evaluated low-cost candidate
 - Automatic detection, high resolution surveillance of airport movement areas, approach corridors, other areas of interest
 - Extracted radar plot data and processed digital video
- FAA conducted competitive acquisition
- Volpe supporting deployment
 - Installation and test
 - Ad hoc problem solutions
 - RF Modem development

Dassault Radar at Norfolk

ASDE-X System Production Equipment

Surface Movement Radar

Multilateration Equipment

aditer 2

Gulf of Mexico Evaluation of ADS-B and Multilateration

- Sponsors:
 - NASA Original sponsor
 - FAA Program participant
- Problems
 - No radar coverage across Gulf
 - No coverage of offshore aircraft
- Two Candidate Solutions
- ADS-B
 - New transponders
 - One ground station in view
- Wide Area Multilateration
 - Current transponders
 - Multiple ground stations in view
- Three-phase / four-year effort
 - Standard terminal area
 - Small terminal area (helo-focus)
 - En Route / Oceanic

Experimental ADS-B Track Gulf of Mexico

the

editer 2

the

GNSS Impact on CNS/ATM

- GNSS is Different From Ground Based Navaids
- Areas of Degraded Coverage Not Stationary due to Motion of Satellite Tracks
- Pilots/ATC Need to Know Where and When GNSS is Not Available
- Vulnerabilities of GNSS Must be Addressed

TSO C129 RAIM NPA Availability PRN 5 Out of Service September 2005 Volpe Center Model

30

20

40

60

50

DFS Deutsche Flugsicherung

the OLPE cegiter ?

Brazil GPS Performance Monitoring System Overview

Wake Vortex Program Goals

- Increase airport arrival and departure rates by reducing wake-imposed aircraft separations
- Increase safety margin by employing new procedures only under specific conditions

Wake RMP Sequence of Mitigation Changes

- 1. Procedure changes only (weather independent)
- 2. Changes based on data from existing airport weather sensors
 - Primarily wind
- 3. Changes based on new weather sensors
 - Wind vertically and horizontally dispersed
 - Wake demise
- 4. New procedures using data from newlyprocured wake sensors

Current Volpe Activities

- Experimental data collection and analysis for procedure and safety case development
 - St. Louis (on-going)
 - Waiver to 2500-ft rule (procedural change)
 - Change to Order 7110.65 to 2500-ft rule (procedural change)
 - Preparing for departure measurements
 - Denver (on-going)
 - Support to STL work
 - Experimental sensor evaluation
 - Planning for additional airports
 - San Francisco
 - Cleveland
 - Memphis
 - Houston
- Contributing to
 - ConOps development
 - A380 İssue
 - B757 Classification Issue
- Wake sensor development

6/16/2006

Pulsed Lidar at St. Louis Airport

STL Sensors Largest Wake Data Collection Effort to Date

