Economic Performance and NGATS

NEXTOR 2nd National Airspace System Infrastructure Management Conference 13 June 2006

Dr. Sherry S. Borener
Director
Evaluation and Analysis Division
Joint Planning and Development Office

Acknowledgement

This presentation includes work performed by a number of organizations and persons supporting the JPDO Evaluation and Analysis Division.

Outline

- 2025 Aeronautics Activities and Worldwide Demand
- NAS Capacity Constraints Analysis What if we can't satisfy 3X demand?
 - Estimating the loss in feasible throughput
 - Estimating the economic loss
- JPDO Cost Workshops
- Supplement Alternative Funding Schemes

2025 Global Aeronautics Activities

- 2/3 of world aeronautics industry will take place outside of North America by 2025.
- U.S.-International trade in aeronautics goods and services will grow in importance with respect to U.S. domestic trade in goods and services.
- American airlines and aeronautics companies will form more partnerships with foreign partners.

lext Generation Air Transportation Sys

JPDO Process for Achieving the NGATS

Baseline and Assess Today's Performance

Define Concept of Operations:

Identify

Future

Capabilities and

Outcomes

Define and Implement Incremental Solutions via Segments

Define the "What"

- Architect & Analyze
- Define Solutions
- Execute & Measure

Develop EA; Identify Gaps and Overlaps; Determine Research and Program Needs

Analyze Alternative
Solutions and Assess
Tradeoffs

2025 - International Harmonization

- Successful NGATS implementation will require significant coordination between the U.S. government and industry and foreign governments and industry.
- We must develop truly 'international' standards for aircraft, required equipage, and operational paradigms.
 - Because of residual value concerns, this is an issue even for non-international carriers.
- Aeronautics companies must bear this in mind, paying more attention to other parts of the world.
- This will require placing increased emphasis on the needs of other countries and coordinating with key regions for the continued competitiveness of U.S. industry.

Notional NGATS Funding Profiles

Profile "A": No new funds; Live within budget runouts

Profile "B":

Moderate constant resource increase required

Budget Runout @ 3%

NGATS Budget

Committed Budget

Profile "C":

Major program phases and funding required

Budget Runout @ 3%

NGATS Budget
Committee Budget

2025 Fleet Predictions

- Overseas demand for aircraft will by far outpace U.S. domestic demand over the next 20 years
 - Airbus predicts that 72 percent of the demand for new aircraft though 2025 will be outside of the United States
 - Boeing forecasts that 66 percent of the demand will be outside of the United States
- Of new aircraft needed, the United States will need 28 percent, Europe will need 32 percent, and Asia-Pacific countries will need 27 percent.
- Boeing predicts that the world passenger fleet will double in the next 20 years to almost 35,000 airplanes.
- The world freighter fleet will double over the next 20 years, from 1,766 to 3,456.
- By 2025, there will be more RPKs to/from the U.S. than within the U.S.

Aligning Incentives Between Providers and Users

Analysis of NAS Capacity Constraints

- We know that there are many facets of National Airspace System (NAS) capacity
 - Terminals, Runways, Taxiways, En Route sectors
- At a macro level, for this analysis, we have lumped capacity into only two categories: en route and airport
- What we'd like to see is which of these two categories constrains NAS performance first and to what degree
- We also want to investigate characteristics of the traffic when the NAS performance is constrained

Capacity Analysis Approach

Capacity Analysis Metrics

- "Unconstrained demand" represents the public's desire for air transportation
 - The FAA's Terminal Area Forecast, based on socioeconomic data, does not consider whether future NAS capacity will be sufficient to accommodate all the demand
 - Capacity constraints will force some of the demand to be left unsatisfied
- Our composite capacity metric is "feasible throughput" which is measured in terms of number of flights
 - Flights are eliminated from the future flight schedule after a specified airport delay tolerance or sector capacity is reached

Fred's Visualization

3X Traffic, International Flights Colored Red 15:40

3X Scenario Results

Summary of Capacity Constraints Analysis 3X Demand

Category	3X Baseline Demand	3X Feasible Throughput (Airspace Constrained)	3X Feasible Throughput (Airports Constrained)	3X Feasible Throughput (Airports and Airspace Constrained)
Flights in NAS	173,980	142,782	114,156	112,595
Number of Flights Trimmed	N/A	31,198	59,824	61,385
% of Flights Trimmed	N/A	18%	34%	35%

- Assuming only FAA airport capacity benchmark report airport capacity improvements and no airspace capacity improvements, the portion of demand that cannot be satisfied ranges from 18% to 35%.
- •Note that the unsatisfied demand for the Airport Constrained and the Airport/Airspace Constrained cases are almost identical.

Impact on U.S./International Traffic

3X Demand - Airports/Airspace Constrained

Category	International Outbound Flights	International Inbound Flights	International Overflights
3X Unconstrained Demand	8,100	7,400	20,106
3X Feasible Throughput	6,012	5,550	20,044
Number of Flights Trimmed	2,088	1,850	62
% of Flights Trimmed	26%	25%	0%

- Approximately ¼ of both International Inbound and International Outbound flights to/from the U.S. could not be satisfied under the 3X scenario.
- The impact on International Overflights is negligible.

Reduction in INTL flights at OEP Airports 3X Demand – Airports/Airspace Constrained

3X Constraints Analysis Yield and Consumer Surplus

NPV of Constraints Reduction (3X)

3X Constraints Analysis ext Generation Air Transports Yield and Consumer Surplus

JPDO Cost Workshops

- A detailed "bottom-up" design cost for a program of this complexity, duration, and number of "known unknowns" is not yet practicable
- Objective of Cost Workshops are to make first order engineering estimates of:
 - required total funding
 - contingency reserves
 - funding profile shape, magnitude, and duration with acceptable performance outcomes and risks
- Continually justify requirements through political and technical reviews

Cost Workshop 1 – Key Policy Issues

- Who (NASA or FAA) will do the research?
 - Distribution of funding and people?
 - Are the combined resources available?
- Research should account for international harmonization issues and requirements
- Industry wants to work collaboratively to develop specifics of the architecture
- Successful execution to the NGATS schedule requires strong linkage & leadership from fundamental research through decision points to certification and implementation
- FAA must gain commitment from other agencies

Cost Workshop 1 – Key Policy Issues

- FAA commitment must be demonstrated
 - Exploit existing aircraft capabilities, e.g., RNP1 procedures
 - Develop integrated process representing all FAA players and necessary steps for implementation (including certification)
 - Harmonize international standards to preclude extra equipage (impacts residual aircraft values)
- NAS users have short ROI horizons
 - Less than one year for existing equipment
 - Approximately 1 3 years for new equipment
 - Implication: early adopters will need hard incentives
 - Subsidies, tax breaks, financing options, targeted deployments for early adopters
- An NGATS service roadmap is needed that
 - Specifies required equipage in specific time increments and airspace accessibility
 - Bundles capabilities with clearly defined anticipated benefits and needed investments
 - Uses a 4 5 year equipage cycle to synch with maintenance schedules

Questions?

