Clark School Home UMD

ISR News Story

Safer, Better Li-Ion Batteries

Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.
Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

UMD researchers have developed, for the first time, a flexible, solid-state, ion-conducting membrane based on a 3D Li-ion conducting ceramic nanofiber network. High capacity, high safety, and long lifespan are three of the most important key factors to developing rechargeable lithium batteries for applications including portable electronics and electrical vehicles. 

To develop a safer, higher performing lithium-ion battery, the membrane shows superior thermal stability and electrochemical stability to high voltage, and can replace conventional flammable organic liquid electrolyte systems in lithium-ion batteries.

The full article, “Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries” was published online last week in the Proceeding of the National Academy of Sciences (PNAS).

The research is also featured in NanotechWeb.org, a website from the UK Institute of Physics.

June 16, 2016


Prev   Next

 

 

Current Headlines

BIOE, UMB to Host October Symposium

Khaligh elevated to Fellow of Institution of Engineering and Technology

Alumnus Amir Ali Ahmadi receives PECASE Award

Alum Samuel Gollob is NSF Graduate Research Fellow

Espy-Wilson, Sivaraman research aims to improve speech inversion

Simon invited speaker at implantable auditory prostheses conference

Narayan is PI for NSF information-theoretic signal processing sampling research grant

The Battery Revolution

Fagan, Gurarie receive NSF grant for research modeling animal dispersal

Alumnus Domenic Forte is PECASE recipient

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar