Design For Production: Using Manufacturing Cycle Time Information to Improve Product Development

J.W.Herrmann, M.M.Chincholkar

Microwave Modules are electromechanical devices used in radar applications.

Embedded Passives are buried or embedded into a PCB substrate, which reduces board size.

What is DFP?
Design for Production describes techniques for calculating capacity requirements and estimating the manufacturing cycle time of a new product in a new or existing manufacturing system. It identifies problems due to insufficient capacity or congestion in a factory or supply chain and makes redesign suggestions. Reducing manufacturing cycle time early in the product realization process avoids unnecessary costs and delays in time-to-market and production.

Parallel Manufacturing System and Product Design
Manufacturing cycle time is an important performance measure. The product development team should aim to avoid manufacturing cycle time problems by predicting the impact that the product design has on the manufacturing cycle time and making needed changes to the product design and the manufacturing system.

DFP-MVM
Estimates changes to resource utilization and manufacturing cycle time as the product mix and throughput change.

Introducing a new product increases resource utilization unequally.

DFP-EP
Estimates the impact of embedding passives on manufacturing system performance, including resource utilization and manufacturing cycle time.

In this example, manufacturing cycle time decreases as more passives are embedded.

Implementing DFP
The left-hand figure is a general DFP flow chart. The right-hand figure is a prototype DFP tool.