

In-Mold Assembly: A New Approach to Assembly Automation

A. Ananthanarayanan, W. Bejgerowski, A. Maghdouri, D. Mueller, and S.K. Gupta Sponsors: NSF and Army MURI

In-Mold Assembly Concept

Motivation

- · Traditional manufacturing Fabricate individual parts
 - Assemble parts to create products
- - Complex assembly operations need to be done manually
 - · Increases defect rates
 - · Significant labor costs
 - Assembling small parts is very challenging

This design contains parts whose largest dimension is less than 2 mm

Small parts and complex geometry make it very difficult to assemble this a MAV swashplate

mold fully assembled

New design enabled by in-mold assembly

Consists of 5 pieces and no assembly operation

Goals

- Explore alternative ways to control deformation at the interfaces
- Develop model to estimate deformation of premolded components
- Develop an understanding of in-mold assembly
- Develop model to estimate joint clearances
- Develop mold design templates to realize rigid body and compliant joints

Process Capabilities

Rigid Body Joints

Spherical joint

Rotor structure

- · We have developed mold design templates for successfully realizing revolute, prismatic, spherical, and universal joints using in-mold assembly
- We have developed methods to control shrinkage of the second stage part to provide the adequate joint clearances

Embedded Electronics

Compliant Joints

- We have developed mold design templates for realizing variety of 1 DOF and 2 DOF compliant joints using in-mold assembly
- · We have characterized the influence of interface geometry on the interface strength to optimize joint performance

Mesoscale Joints

in polyurethane

Full circuitry embedded in ABS

- · We used in-mold assembly process to successfully embed batteries and electronics in a snake robot module
- We have shown that embedded electronics exhibits superior resistance to mechanical and thermal impacts

Second stage part (LDPE)

Part with 0° Rotation

diameter: 0.8 mm Part with 90° Rotation

First stage part (ABS), pin

We have developed methods to predict and control second stage part deformation due to the melt part interactions

Applications Flapping Wing MAV

Flapping wing MAV

Attributes of MAV

Overall Weight

Flapping frequency

Flight Duration

Flight velocity

Mechanism

MAV built at the Manufacturing Automation Lab held a sustained flight and was radio controllable

Molded drive mechanism frame

- Molded drive mechanism converts rotary motor motion to flapping action for wings
- · In-mold assembly methods used to
 - Automate assembly process
 - Eliminate fasteners
 - Decrease weight

Miniature Robot

Mesoscale revolute ioint

12.9g

12.1 Hz

5 min

4.4 m/s

Assembled robot bi-module

- Shape memory alloy (SMA) actuated robot developed by Manufacturing Automation Lab in collaboration with RAMS
- In-mold assembly methods used to
 - Significantly reduce part count
 - Eliminate fasteners