

# Optimal rate control policies for proportional fairness in wireless networks

Anna Pantelidou A

Anthony Ephremides

#### **Motivation**

 Exploit throughput gains by integrating the physical and MAC layers in wireless networks

G(1, 1)

G(K, 1)

#### Model

- ${\scriptstyle \bullet}\ K$  transmitter/receiver pairs
- Infinite data at transmitters
- Slotted time
- Power of transmitter  $k: P_k$
- Path loss:  $0 \leq G(\ell,k) \leq 1$
- ${\scriptstyle \bullet}$  Noise power: N
- •Transmission success criterion (SINR):

 $\mathrm{SINR}(k) = \frac{P_k G(k,k)}{N + \sum_{i \neq k} P_i G(i,k)} \ge \theta_k$ 

### **Rate Control**

- $heta_k$  is an increasing function of the rate
  - More successful concurrent transmissions at lower rates
  - vs. less transmissions at higher rates
- $2^{K} \operatorname{possible}$  rate allocations to the K pairs
- Restrict attention to K+1 rate allocations
  - All K transmitters operate simultaneously
    - Instantaneous rate of transmitter  $k : r_k^0$
  - A single transmitter transmits at any time
    - Instantaneous rate of transmitter  $k : r_k^k$

#### **Optimization: Proportional Fairness**

- Probability distribution over rate allocations:  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots, \pi_K)$
- Find  $\pi$  so that the average transmission rates of all transmitters are proportionally fair

$$\max_{\boldsymbol{\pi}} \sum_{k=1}^{K} \log(r_k^0 \pi_0 + r_k^k \pi_k)$$
  
s.t.
$$\sum_{i=0}^{K} \pi_i = 1, \ \pi_i \ge 0, \ i \in \{0, 1, \dots, K\}$$

## **Optimal Policy**

Assumption

- ullet Schedules individually all transmitters in  ${\mathcal J}$
- $\mathcal{J}$  contains  $|\mathcal{J}|$  transmitters with the lowest rates  $\tilde{r}_1^0 \leq \ldots \leq \tilde{r}_{|\mathcal{J}|}^0$ , where

$$|\mathcal{J}| = \arg \max_{\ell \in \{1, \dots, K\}} R(\ell), \ R(\ell) = \frac{r^5 - \sum_{i=1}^{c} \tilde{r}_i}{K - \ell}$$

- Threshold type policy yields  $\pi^*$
- Transmitter k individually transmits with  ${}_{*}$  1 (  ${}_{1}$   ${}_{k}$   ${}_{k}^{0}$  )

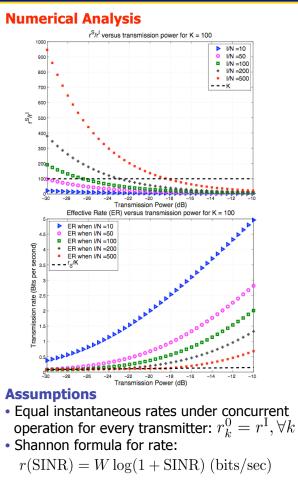
$$\pi_k^* = \frac{1}{K} \left( 1 - \frac{1}{R(|\mathcal{J}|)} \right)$$

if and only if  $r_k^0 \leq R(|\mathcal{J}|)$  , otherwise  $\pi_k^* = 0$ 

• All transmitters concurrently transmit with  $1 - \frac{1}{2}$ 

$$\pi_0^* = \frac{1}{K} \frac{T^2}{R(|\mathcal{J}|)}$$

• Equal instantaneous rates under individual operation for every transmitter:  $r_k^k = r^{\rm S}, \forall k$ 



•  $N=3.34\times 10^{-6} {\rm Watts},\, G(k,k)=1,\, W=1$  Hz

### **Concluding Remarks**

- Coupled MAC with the physical layer
- Considered objective of proportional fairness
- How to generalize to multihop networks?