

Efficient Analytical and Numerical Techniques for the Analysis and Design of Wireless Networks

John S. Baras, Vahid Tabatabaee, George Papageorgiou

Objective and Approach:

- •A methodology for Design and Analysis of Wireless Networks.
- •Analysis:
 - •Performance Models for PHY, MAC and Routing.
 - ·Loss models to abstract cross-layer interaction.
 - •Fixed Point methods to derive inter and intra layer solutions.
- •Design:
 - Design for robust or optimal solutions based on sensitivity of the performance models.
 - ·Analytical and numerical methods for sensitivity analysis:
 - •Automatic Differentiation for implicit deterministic models.
 - ·Analytical methods for explicit deterministic models.
 - Perturbation Analysis for stochastic models.

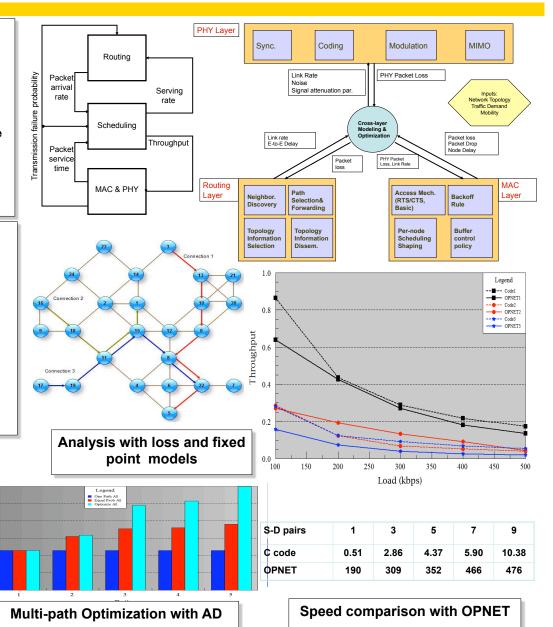
The Model

- ·Inputs:
 - Network topology, traffic demand, neighborhood relations.
- ·MAC model:
 - •Extension of the Bianchi and Tobagi models for multi-hop, multipath networks based on 802.11.

0.5

- •PHY model:
 - ·Fixed error rate or based on computed SINR
- •Routing:
 - Probabilistic multiple path routing
- •Design:
 - Optimal routing to maximize throughput
 - Gradient projection method
 - Automatic Differentiation for gradient derivation

Enhancement of MAC layer Modeling


Enhancements and generalizations:

- ·Hidden nodes
- ·Multiple paths with common nodes
- Node scheduling algorithms

Computations at each node:

- Every path scheduling rate
- Transmission failure probabilities
- •Average service time:

successful transmission + successful transmissions of neighbors + failed transmissions + Average back-off time

