

Effects of Cooperation on the Secrecy of Multiple Access Channels with Generalized Feedback

Ersen Ekrem and Şennur Ulukuş

Motivation

- Inherent openness of wireless medium brings two concepts:
 - Cooperation: Overheard information allows users to cooperate and increases rates
 - Secrecy: But it also decreases secrecy
- How do cooperation and secrecy interact?
- Our focus:
 - A two user multiple access channel with generalized feedback
 - Each user considers the other as a wire-tapper
 - Yet, they are still willing to cooperate through feedback
 - How does cooperation affect secrecy?
 - * Feedback increases achievable rates, but what about secrecy?

MAC with Generalized Feedback

- Presence of feedback: Cooperation and/or Secrecy
- Cooperation:
 - Similar to the relay channel, basic schemes are decode-and-forward (DAF) and compress-and-forward (CAF) [Cover-El Gamal 1979]
 - DAF: Cover-Leung 1981, Willems et al. 1983, Carleial 1982
 - CAF: Khojastepour 2004, Ong-Motani 2007
- Secrecy:
 - Previous works did not utilize the feedback, i.e., no cooperation
 - The only effect of feedback: Leakage of confidential information
 - * Liang-Poor 2008, Liu-Maric-Yates-Spasojevic 2006

Generalized MAC with Secrecy

Figure 1: The channel model in Liang-Poor 2008, Liu et. al. 2006.

An Achievable Scheme

Theorem 1 Rate tuples $(R_1, R_2, R_{e,1}, R_{e,2})$ satisfying

$$R_1 \leq R'_1 \leq I(X_1;Y,\hat{Y}_1|U,X_2)$$

$$R_2 \leq R_2' \leq I(X_2; Y, \hat{Y}_1 | U, X_1)$$

$$R_1 + R_2 \le R'_1 + R'_2 \le I(X_1, X_2; Y, \hat{Y}_1 | U)$$

$$R_{e,1} \leq \min\{R'_1 - \tilde{R}_{e,1}, R_1\}$$

$$R_{e,2} \le \min \{R'_2 - I(X_2; Y_1|U, X_1), R_2\}$$

where $\tilde{R}_{e,1}$ is given by

$$\tilde{R}_{e,1} = \left\{ \begin{array}{ll} I(X_1;Y_2,\hat{Y}_1|U,X_2) & if \quad \mathcal{S}_1 \\ I(X_1;Y_2|U,X_2) & otherwise \end{array} \right.$$

are achievable for any distribution of the form

$$p(u)p(x_1|u)p(\hat{y}_1|u,x_1,y_1)p(x_2)p(y,y_1,y_2|x_1,x_2)$$

subject to the constraint

$$I(\hat{Y}_1; Y_1 | U, X_1) \le I(U, \hat{Y}_1; Y)$$

where

$$\mathcal{S}_1 = \left\{ I(U;Y) \leq I(U;Y_2|X_2), \quad I(\hat{Y}_1;Y|U) \leq I(\hat{Y}_1;Y_2|U,X_2) \right\}$$

Comments on the Achievable Scheme

- · It uses CAF for cooperation
- Stochastic encoding:
 - Embed your messages (R_1, R_2) to a larger codebook (R'_1, R'_2)
 - Additional redundancy is to confuse the other user

- User 1's observation can include self-interference
 - We eliminate user 1's signal, X_1 , from Y_1 while compressing it to \hat{Y}_1
 - An alternative: Keep self-interference for a possible rate increase
- Channel prefixing can be employed, replace X_1 (resp. X_2) with V_1 (resp. V_2) and the PMF with

$$p(u)p(v_1|u)p(x_1|v_1)p(\hat{y}_1|u,v_1,y_1)p(v_2)p(x_2|v_2)p(y,y_1,y_2|x_1,x_2)$$

- User 2 may want to decode the compressed version of user 1's feedback, \hat{Y}_1
 - Depending on whether it can or not, different leakage expressions
- We can also extend this scheme to the case with two-sided cooperation [Ekrem-Ulukus CISS 2008]

Gaussian Channels

A Gaussian MAC-GF is

$$Y_i = X_1 + X_2 + Z_i, \quad i = 1, 2$$

 $Y = X_1 + X_2 + Z$

where $Z \sim \mathcal{N}(0, N), Z_i \sim \mathcal{N}(0, N_i), i = 1, 2.$ $E[X_1^2] \leq P_1$ and $E[X_2^2] \leq P_2$.

- · For Gaussian channels without cooperation,
 - If $N_1 < N$, then $R_{e,2} = 0$ and if $N_2 < N$, then $R_{e,1} = 0$
- · What is the effect of cooperation on secrecy?
 - Case I: No secrecy for user 2 if cooperation is not allowed, $N_1 = 0.75 < N = 1 < N_2 = 1.25$

- Case II: No secrecy for both users if cooperation is not allowed, $N_1 = N_2 = 0.75 < N = 1$

Conclusions

- Cooperation can increase secrecy; even an untrusted party can help
- Since cooperation enlarges achievable rates, this might be expected
- Crucial point: Depends on how cooperation enlarges the achievable region
 - DAF or partial DAF cannot increase secrecy, but CAF can.
 - Via CAF, a user can increase the rate of the other user beyond its own decoding capability.