

Swarm Intelligence Based Network Optimization

Punyaslok Purkayastha, Tao Jiang and John S. Baras

Swarm Intelligence

Swarm intelligence (SI) based

- Biologically inspired: biological swarms like ants, bees, etc.
- Requests are delivered by sending out multiple but simple ant agents that travel the network and fetch information.

Properties:

- Indirect communications between the agents (ants): (efficiency)
- Dynamic "online" optimization using local information (adaptability, scalability)

Advantages:

- Reinforce good quality paths by feedback
- · Discover new sources via random exploration of the network
- SI scheme can be used both for route discovery and trust evidence discovery (leads to method for secure routing).

Ant Routing Algorithms

Features:

- Probabilistic routing of packets
- Adaptive, distributed routing:
 - Ant (probe) packets collect network statistics.
 - Information in ant packets is used to update routing tables (routing probabilities)

· Operations:

- Two types of ant packets: Forward Ant (FA) and Backward Ant (BA)
- FA records IDs of nodes visited and per-hop delays it encountered
- FA generates BA when it reaches destination d.
- BA retraces path back to the source s along priority queues.
- BA updates Routing Table R(i) and Network Statistics Table L(i) at each node i it passes.

Problem Formulation

Ant Routing Scheme (Bean and Costa '05)

- Mean delay table L(i):
 - X_i^{sd}: exponential averaging estimator for delay on path from s to d via i
- Routing table R(i):
 - ϕ_i^{sd} : probabilities of forwarding packets to node i, $\phi_i^{sd} \propto \left[X_i^{sd}\right]^{-\beta}$
 - $[X_i^{sd}]^{-1}$: interpreted as 'pheromone content' on outgoing link (s, i)

Example

N Parallel Links Case

- Incoming traffic : Ant stream Poisson (λ_A) , and Data stream Poisson (λ_D)
- Lengths of ant and data packets generally distributed with means
 L_A and L_D bits

Parameter Updates

Mean delay table L(i):

 When an ant packet arrives at d via Q_i with new delay measurement, X_i is updated as:

$$X_i := X_i + \varepsilon(\Delta_i - X_i)$$

Delay estimates for other queues are left unchanged:

$$X_i := X_i, j \neq i$$

Routing table R(i):

· routing probabilities are updated as:

$$\phi_i = \frac{[X_i]^{-\beta}}{\sum_{j=1}^{N} [X_j]^{-\beta}}, i \in \{1,...,N\}$$

Analysis and Results

Key idea: Time-scale decomposition for $\varepsilon > 0$ small enough

- Delay estimates X_i evolve much more slowly than the delay processes Δ_i;
- With (X₁(·), ..., X_N(·)) fixed at z₁, ..., z_N, delay processes Δ_i converge to a stationary distribution;
- ODE approximation tracks evolution of $(X_1(\cdot), ..., X_N(\cdot))$.

Steady-state behavior

- Equilibrium points of ODE give system steady-state behavior.
- Steady state probabilities $\phi_1^*, \dots, \phi_N^*$ are positive and satisfy the fixed-point equations
- ϕ is the unique global minimum for the optimization problem :

Minimize
$$F(\phi_1,...,\phi_N) = \sum_{j=1}^N \int_0^{\phi_j} u \left[D_j(u) \right]^\beta du$$
, subject to the queue stability constraints and $\sum_{i=1}^N \phi_i = 1$.

Trust Evidence Discovery

- The ant based scheme quickly finds the best solution because of randomness in the searching phase. The fast convergence property is highly desirable in mobile scenarios.
- Multiple paths are inherent for swarm intelligence. The multiple path scheme is more resilient to failures.