

Language Detection for Music Information Retrieval

Vikramjit Mitra, Daniel Garcia-Romero and Carol Y. Espy-Wilson

Speech Communication Lab

SCL

Introduction

This research aims to introduce a systematic approach towards audio information retrieval using a Vocal-Instrumental detector (VID) and Language Identification (LID).

Cascade architecture for language dependent Genre detection

- Since Genre types vary with language, knowledge of the language used in the vocals can improve Genre detection accuracy.
- Detecting language provides content related information that allows us to work with multilingual databases

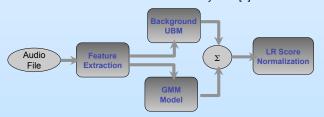
Example of a possible Information Retrieval based Audio-browser

#	File [Type	Genre	Language	Vocalist	
1	San_Cha_Kou .wav	Vocals	Pop	Chinese	Aaron Kwok	Male
2	Viviendo_deprisa.wav	Vocals	Pop	Spanish	Alejandro Sanz	Male
3	Aubak_Prithivi_Aubak.wav	Vocals	Adhunik	Bengali	Hemanta	Male
4	Holiday.wav	Vocals	Soft Rock	English	Scorpions	Male
5	Top_gun.wav	Instrumental	Rock	NA.	NA	NA
6	Bombay_theme.wav	Instrumental	Hindi Film	NA.	NA	NA

Database

- Since no standard multi-language audio corpora is available, our corpus was created in-house and manually tagged
- 1358 audio segments of approximate duration 10 secs were created from larger audio files and downsampled to 8 kHz (region where speech is dominant)

Distribution of files by Language


		Instrumental							
	English	Bengali	Hindi	Spanish	Chinese	Russian			
#Segments	465	234	210	103	85	75	186		
#Genre	7	3	3	2	2	2	2		

- Since we are unable to separate the vocals from the background music, we segmented the audio segments that contain vocals in such a way that the vocals are dominant (i.e., the duration of the vocals is greater than 50%)
- Additionally, we made sure that the vocals are not dominated by nonsense words or humming.
- > 67% used for training, rest for testing

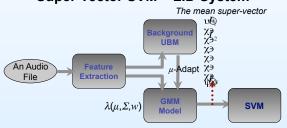
Vocals – Instrumental Detector (VID)

- Used Gaussian Mixture Model as the backend
- Two different feature sets considered
 - Mel-frequency Cepstral Coefficients (MFCC)
 - Shifted Delta Coefficients [1]
- UBM was trained using the entire training set

The GMM-UBM based VID system [2]

Confusion matrix for 512 order GMM-VID

	Vocals	Instrumental		
Vocals	100	0		
Instrumental	12.9	87.1		


The GMM Language Identifier (LID)

- Different feature sets considered:
 - MFCC, SDC, MSDC, FSDC
 - FSDC provides multi-resolution, but dimension ↑

Avg. Error for GMM-LID using 2048 mixture GMM-UBM

	MFCC	SDC	MSDC	FSDC
Error (%)	17.3	20.7	18.3	20.2

Super-vector SVM - LID System

- 2 GMM-super-vectors considered
 - > SV-MFCC: MFCC with 256 mix. GMM (Error 10.4%)
 - > SV-MSDC: MSDC with 256 mix. GMM (Error 8.65%)
- ➤ Error can be further ↓ by fusing super-vector LID with GMM LID (Error 8.39%)

The Fusion model

Confusion matrix for the Fused LID system

Contactor matrix for the racea LID system							
	CHN	RUS	BEN	HIN	ESP	ENG	
CHN	80.00	0.00	4.00	0.00	4.00	12.00	
RUS	0.00	94.12	0.00	2.94	0.00	2.94	
BEN	0.00	0.00	89.74	1.28	0.00	8.97	
HIN	0.00	0.00	4.29	87.14	0.00	8.57	
ESP	0.00	0.00	0.00	3.57	75.00	21.43	
ENG	0.00	0.00	1.29	0.00	0.00	98.71	

Conclusion

- >Vocals can be detected from Instrumentals with high acc.
- > Language can be detected with an average accuracy 91.6%.

References

[1] B. Bielefeld, "Language identification using shifted delta cepstrum", Proc. 14th Annual Speech Research Symposium, 1994

[2] D.A. Reynolds, "Comparison of background normalization methods for text-independent speaker verification". Proc. EU Conf. on Speech Comm. & Tech., pp.963–966, Sep 1997.