

APPROXIMATE DYNAMIC PROGRAMMING AND ITS APPLICATION IN ADMISSION CONTROL

Chang Zhang/Advisor: John S. Baras

Email: zchang@isr.umd.edu / baras@isr.umd.edu

Objectives and Outline

- Overcome the "curse of dimensionality".
- Reduce the computational time and computational cost by using approximate Dynamic Programming (DP) methods.
- Two approximate DP methods are proposed:
 - The Direct Computation based on state Aggregation (DCA) method.
 - ➤ The Distributed Hierarchical Dynamic Programming (DHDP) method.

The DCA Method

- Computation is carried on the aggregated system.
- Solutions of the aggregated system are mapped back to the original system.

The DHDP Method

- Parallel computation in each subsystem.
- Reduced complexity in each subsystem.
- Information exchange is minimized in the channel.

Network Admission Control

- Objective: Minimize cost; $\min\{E\sum_{t=0}^{\infty}\alpha^{t}(u(t)R + H(q(t)))\}$
- Packets arrive according to Poisson Distribution.
- Decisions: Accept or reject incoming packets.

Application of the DCA Method

The arrival rate is $\lambda = 0.4$ packets/sec, service rate $\mu = 0.6$ (prob. of service completion).

Systems	Original	Two-states in a cluster	Four-states in a cluster	Ten-states in a cluster
Run time	26.03	21.15	15.10	11.14
Threshold for decision $u(t) = 0$, if $q(t) < Th$	Th = 5	Th = 5	Th = 7	Th = 9
Residual error in [0, 60]	0	9.35	24.78	66.58

Application of the DHDP Method

The arrival rate is $\lambda = 0.4$, service rate $\mu = 0.6$

Scenario	λ	Threshold	Run time	Residual error in [0,60]
1	0.4	5	3.77	146.69
2	1.2	1	2.71	140.06
3	0.1	100	3.81	128.72

Run Time Comparison

Conclusions

• The DCA method and the DHDP method can reduce computational complexity and computational time.