

A Novel Model for Tool-Wear

Estimation

Aim: To estimate wear in a milling tool from information present in the acoustic emissions during metal cutting.

Data: Samples from accelerometer mounted on tool spindle.

Approach: Model the wear process as a *Hidden Markov Model*

Sound - is affected by wear level

- is an indicator of wear rate

Three elements:

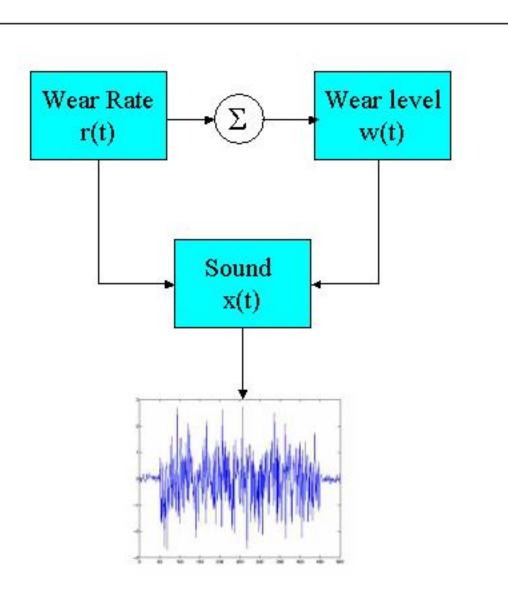
 $\mathbf{r}(\mathbf{t})$ - Wear rate at time t, is Markov.

 $\mathbf{w}(\mathbf{t})$ - Wear level at time t.

$$w(t) = w(0) + \sum_{t=1}^{1} r(t')$$

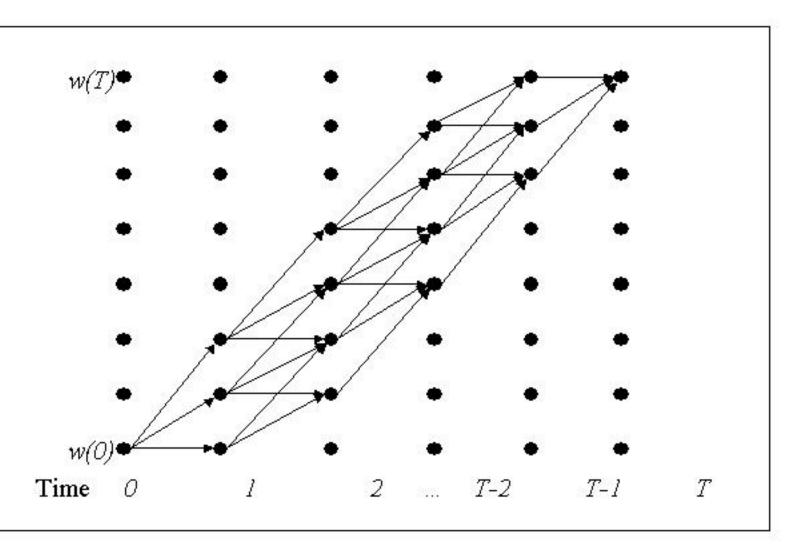
x(t) - Feature vector derived from the sound (observations)

$$x(t) \sim P_{r(t),w(t)}(x)$$



Baum-Welch Algorithm:

- 1) Start with a good guess for all parameters. (Transition probabilities and $P_{r(t),w(t)}(x)$)
- 2) Take all sequences of r(t) that start from w(0) and end at w(T).
- 3) Compute expected values for parameters.
 - 4) Iterate until convergence.



Isolating wear-rate features

- 1) Create classifier using only wear-level information.
- 2) Use classifier on training data to separate high-wear segments from low-wear segments.
- 3) Use Fischer discriminant to pick out features that most separate high-wear from low-wear.

Average absolute wear error in 0.001 inch

Type of classifier	Training set	Testing set
Using wear- level information only.	0.46	0.42
Using wear-level and wear-rate information	0.33	0.37

Wear-level and wear-rate estimate vs. tool life

