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ranularity in magnetic medium

@ The recording medium on a hard disk drive (HDD) is a thin

film of magnetic material.

@ The magnetic medium is physically composed of fundamental
magnetizable units, called grains, of irregular shapes and sizes.

Grains comprising a portion of the magnetic surface

@ The granular magnetic medium is conceptually divided into =2
many sub-micrometer-sized bit cells, each of which records a
single bit of data. In current HDD technology, each bit cell

contains several hundred grains.

@ The write head records data on the medium by magnetizing
each bit cell directionally, to represent either a 0 or a 1; . . . o .
o . H . . @ 1-dimensional medium consisting of n bit cells
all grains within a bit cell acquire the same magnetic polarity.

Cross-section of magnetic material
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@ The read head reads the data back by detecting the magnetic

polarity of each bit cell.

@ Areal density is the number of bits of data stored
per square inch of medium.

@ Currently, HDDs with areal density of 300-400 Gbits/sq.in.

are commercially available.

The push is on towards 1 Terabit/sq.in

o Itis believed that 10 Tbits/sq.in. is achievable.
@ As areal density increases, the bit cells must get smaller.

o Eventually, bit cells must become as small as grains.

@ Since each grain can store only one bit of data, there is a
fundamental one-bit-per-grain limit to the storage capacity

of the magnetic medium

Bottlenec

..in achieving the one-bit-per-grain limit

@ The read /write head is typically unaware of the shapes and

positions of the grains in the medium.

@ Bits get written into the bit cells of the medium in some
prescribed order (say, raster scan).

@ At each step of the write process, if a grain has significant
(say, > 30%) overlap with the bit cell being currently written,

then that grain gets the magnetic polarity of that bit cell

The Effect of Not Knowing Grain Boundaries

state dies away with time.
e C=_C.

the grain channel

ower Bound: Achievable rate with uniform
The read head detects the polarity value of a small region

: @ x is an i.i.d. Bernoulli(1/2) random sequence.
around the center of each bit cell. 0/2)

The net effect is that some bit cells may get overwritten by
the polarity values of subsequent bit cells;

A Simplified Model

with some effort.
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Grey-shaded regions are grains; blue lines demarcate bit cells H(y") = 2T+ p) h(3) H(l = B)s
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where
@ grain boundaries fall on bit cell boundaries Prlyjri=1|yj=y-1=---=y2=0,y1=1]

@ bits are written from right to left

@ the last bit to be written within a grain overwrites all bits
previously written within the same grain

@ all grains are 1 or 2 bit cells long
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@ the above assumption means that the sizes of the grains does
not vary beyond a certain limit

ower Bound: Zero eri
@ Zero-error capacity:
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where R, is the maximum achievable zero-error rate.
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It is not difficult to show that for n > 1,
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The “Grains Channel”

We consider a probabilistic model of a “grains channel”:

o define v = {é

o Py =
P(v

if nis even

L1

5y if nis odd.

ol ol

Hence, Coeroerror = 1/2

The Repeat-Eac Code

if a length-2 grain ends at position j;
Consider R,, C {0,1}" consisting of all words of the form

otherwise.

(c1.c1, @, 0, a3,03,...)

Channel Input:

x; € {0.1} the action of any length-1 or length-2 grain
Channel Output: ¥ €{0.1} So, the decoder can correctly recover any codeword written on the
Channel State: sj = (7.% & Xj-1) medium

Input-Output Transition: y; # x; iff s; = (1,1) o Ry = 2ln/2]
@ What is the maximum possible rate of information storage i
such a medium?

o Is that rate achievable?

@ R, is t-grain-correcting for any t

Upper Bounding by a Better Channel
@ Can we give an explicit answer as a function of p?

The grain channel is a finite-state channel, there are two channel
capacities, the lower (or pessimistic) capacity C = lim,_, C,, and
upper (or optimistic) capacity C = lim,—.

The grain channel is a degraded version of the
“no-adjacent-erasures” channel:

~ Cpn, where
C,=n"* max min/(x";y" | s9)
Q(xm) =
-1 n.yn —# BINAEras |- ‘7 >
Cp=n"" max max/(x";y" | s). X y .
Q(xm) so
with:
o X" =(xg..... X,): length-n input. GRAINS CHANNEL
oy =y, yp): length-n output .
. ify £e
© so: the initial state Input-Output Transition of ‘?': y; = {y/ fy/ s
P . yioy ify=e
@ Q"(x"): set of probability distributions on the input x” / /

@ The grains channel is indecomposable: the effect of initial

@ However, It is difficult to explicitly compute the capacity of

@ [(x";y") = H(y") — H(y"|x"), the terms can be evaluated

is given by the following recursion: (3o = %(1 —p), and for j > 3,

Note that the second bit in each (. ¢;) pair cannot be changed by

o define ~; = {l
0

otherwise

Channel Input:

x = (xj)jen, X €{0,1}
codes Channel Output:  y = (j)jen, yj € {0,1,¢}
Channel State: s=(s)jeNn. S=7
ifs;=0
Input-Output Transition: y; = % ‘ %
e ifg=1
We have

Cerain < Cro-adj-erase

The capacity of the no-adjacent erasure channel is computed to be

P 1

Coo-adj-erase = 1 — s = s

Plot of acity Bounds

if an erasure occurs at position j;

t-Grain-Correcting Codes

The effect of a given grain pattern is denoted by an operator ¢

that acts upon binary sequences x € {0,1}":
X = (X1,X2,....Xn)

For n,t € Z*, let &, , denote the set of all operators ¢
corresponding to grain patterns comprising n bit cells,
with at most t grains of length 2. [Note: t < n/2]

For x € {0,1}", define &, +(x) = {&(x) : x € &y ¢},

C C {0,1}" is called a t-grain-correcting code if
for all x,x" € C with x # x’, we have

Gpe(x) N Dpe(x') = 0.
Constructions and Bounds

@ M(n.t) := max. size of any length-n t-grain-correcting code.

o If nis a power of 2, then it is easy to construct a
t-grain-correcting code with > 2" /n" codewords.

@ Simply observe that a t-error-correcting code is a t-grain-
correcting code and there can never be an error in the first

position.

M(n,t) < %(1 + o(1)) for any constant t.

Idea of Proof: In a t-grain-correcting code C, the sets &, (x),

x € C, must be disjoint. Hence,
2> [ bne(x)] = D [0ne(x)]
xe¢ xeC

The bound follows from an estimate of [, (x)|
for a “typical” x € C.
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Cardinality /Rate Lower Bounds

When t = 7n, for 0 < 7 < 1/2, define:

R(r) = \iminfw. R(r) = Iimsupw
n—oc e
° M(n,t) > 2", Z/ZLU (7)  [Gilbert-Varshamov bound]
Hence, R(r) > 1 h(2r)

/21 for any n,t [Repeat-each-bit code]

pper Bound

o Define the confusability graph G(n, t) as follows:
o Vertex set = {0,1}"

o x,x' are joined by an edge iff & ¢(x) (1 Dpe(x') £ 0
Let Y, , := smallest size of a clique partition of G(n.t)
For m.n,s.t such that t/n < s/m, we have

M(n,t)

Hence, for 7 < s/m,

YLe/s) gn=mle/s]

Xm,s

m 1 _
s ?*;k’gQ\m.s .

Cardinality/Rate Upper Bounds

R(r)<1

Let ag = (1) be the smallest positive solution of the following

equation: 1 2 a
—x —x T
()7 () -

where h(-) denotes the binary entropy function. For all T such that
ag < 1— 87, the following bound holds true:

The bound follows from an estimate of |, +(x)|
for a “typical” x € C and count of the the “atypical”

X.
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Constructions

@ For small lengths can be found by computer search

(0000,0011,0110,1000,1011) is a 1-grain-correcting code of
length 4. The best 1-error-correcting code of length 4 can
have at most 2 codewords.

@ Concatenated construction for the large lengths (inner codes
are small grain-correcting codes that are better than
error-correcting codes)

@ Work in progress.

@ Find better codes, cardinality bounds, and capacity bounds!

@ How to handle 2-D granular media?



