

IMPEDANCE METHODS FOR ANALYZING SURFACE PLASMONS

Quirino Balzano, Igor Smolyaninov, and Christopher C. Davis Department of Electrical and Computer Engineering

The Maryland Optics Group

SURFACE PLASMONS

•Classical solutions to Maxwell's equations at the interface between a dielectric and a metal •A metal is a dense electron-hole plasma •A metal has a complex dielectric constant with a large negative part. •For example, for gold at 632.8nm ε_2 =-15.73-j0.968

> Kretschman total internal reflection geometry for plasmon excitation Dielectric (absorber) layer

IMPEDANCE TRANSFORMATION

If a slab structure is modeled as a series of transmission lines then the impedance observed at the first interface, at location z=-d relative to a final interface at z=0 is

$$Z_{3}^{"} = Z_{2} \frac{[Z_{3} \cos(kd) + jZ_{2} \sin(kd)]}{Z_{2} \cos(kd) + jZ_{3} \sin(kd)}$$

This approach can be applied in slab structures to analyze electromagnetic wave reflection and transmission

Impedance transformation reduces the number of interfaces by one

Plasmon resonances in gold revealed by an impedance analysis

The resonance angle is very sensitive to a surface layer on the gold

