Semi-autonomous networks of miniature robots for inspection of large infrastructures

Michael Lin, Richard J. La, Nuno C. Martins

Goal of Project – Design a semi-autonomous network of miniature robots for bridge or other large infrastructure inspection with human inspectors in the loop

- Robots deployed to inspect various points and sites of a bridge
- Send measurements (e.g., pictures or videos) to human inspector(s) via base stations/gateways installed on the bridge

Robot Deployment and Path Planning

- Robots stationed at depots placed throughout the bridge
- Each robot assigned a set of points and sites to inspect and report
- Formulated as a min-max cycle cover problem with constraints
 - Objective function is (i) total inspection time or (ii) maximum energy consumption among deployed robots
 - Vertex set consists of points and sites to be inspected
 - Edge weights correspond to (i) travel time or (ii) required energy for travel
- Proposed an approximation algorithm
 - Approximation ratio $5+\varepsilon \text{, where } 0<\varepsilon<1$
 - Computational complexity $O\left(n^2+2^{d-1}(\log(n)+\log(\varepsilon^{-1}))\right)$ where n is the number of vertices, and d is the number of depots

Numerical results for the proposed approximation algorithm along with a lower bound

Task Scheduling with Human-in-the-loop

- Pictures and videos reported by semi-autonomous robots inspected by a human inspector (tasks for human inspector)
- Efficiency of a human inspector depends on past workload or history
- Goal: Design a simple yet efficient task scheduling algorithm for human inspector, which maximizes the long-term throughput of human operator
- Model
 - Tasks arrive according to a stochastic process
 - Efficiency of human operator modeled as the state of a Markov chain
 - Transition probabilities are action-dependent (work vs. rest)

Main results

- There exists an optimal threshold policy that makes a decision solely based on the state of Markov chain (when queue is nonempty)
- When there is more than one type of tasks (e.g., pictures and videos), randomizing between optimal single-queue policies is not optimal

