# Efficient Sensing in Biosystems

Nicola Bertoni<sup>4</sup>, Fabio Pareschi<sup>4</sup>, Mauro Mangia<sup>3</sup>, Jonathan Z. Simon<sup>1</sup>, Riccardo Rovatti<sup>3</sup>, Gianluca Setti<sup>3,4</sup> Timir Datta-Chaudhuri<sup>1</sup>, Bathiya Senevirathna<sup>1</sup>, Alexander Castro<sup>1</sup>, Elisabeth Smela<sup>2</sup>, Pamela Abshire<sup>1</sup>



<sup>1</sup>Dept. of Electrical & Computer Engineering & ISR <sup>2</sup>Dept. of Mechanical Engineering & ISR <sup>3</sup>DEI, University of Bologna, Italy <sup>4</sup>ENDIF, University of Ferrara, Italy

# **Event-Based Readout in Lab-on-CMOS: Spike Processing**

### Introduction

Sampling bio-potential data yields a large amount of data, however the actual information content of the signals is much sparser than the data being collected.

- Transient waveforms require high sampling
- 40 kSamples/s x 16 b/Sample x 32 channels → 154 MB/min
- Spike information is quite sparse:  $< 100 \text{ Spikes/s } \times 32 \text{ channels } \rightarrow < 3.75 \text{ kB/}$ min

Instead of reading out the raw data by itself, we can match the asynchronous signal source with an event-driven readout

- This requires local spike detection capability
- Bandwidth requirements are reduced by a factor of 1600

# Circuit Implementation

NEO requires three fundamental computations: • Derivative: Input capacitor preceding a high-gain inverting

• Multiplier: Translinear four quadrant multiplier with core voltage loop created by six PMOS transistors

amplifier with resistive feedback

• Subtraction: Current-mode subtractor



# **System Overview** Electrode Array

- The system is an active micro-electrode array Array of sensor pixels
- Pixel: Electrode pair, bioamplifier, spike detection circuit, and Address Event Representation (AER) interface
  - Bioamplifier: Operational Transconductance Amplifier (OTA):  $A_v = C_{in}/C_{fb} = 46 \text{ dB}$ ,  $C_{in} = 20 \text{ pF}$ ,  $C_{fb} =$ 100 fF, Passband: 280 mHz to 8.1 kHz
  - Spike Detector: Nonlinear Energy Operator (NEO) algorithm
  - **AER**: Asynchronous readout with full handshaking or autonomous self-timing operation
- Digital pulses sent off-chip to external Data Acquisition system (DAQ)

### **AER Protocol**

- Spike detector triggers event generator Column Arbiter • Row and column
- arbitration controls address generation
- Single spatial address per spike event



#### Bandwidth Reduction Factor<sup>†</sup> (BRF) With typical data acquisition scheme:

 $40 \text{ kSamples/s} \times 16 \text{ b/Sample} \times 1 \text{ B/8 b} = 80 \text{ kB/s}$ With asynchronous readout:

 $50 \text{ AP/s} \times 8 \text{ b/AP} \times 1 \text{ B/8} \text{ b} = 50 \text{ B/s}$ 

per channel in a 16 channel system

# Statistical Bandwidth Reduction: Compressed EEG Sensing

#### Introduction

The study of brain diseases such as schizophrenia has traditionally been performed using laboratory-based EEG and MEG devices. Wireless mobile sensing platforms can be a valuable tool in studying EEG patterns:

- Recording responses that are uncontrolled (e.g. hallucinations)
- Facilitates patient comfort

#### Problem:

• Battery lifetime: system should run continuously throughout the day

#### **Proposed Solution:**

• Compress EEG signals prior to data transmission in a computationally-simple manner

## Low Cost Mobile EEG

Built from commercial-of-the-shelf components and facilitates on-board compressive sensing.

- Biopotential ADC: TI ADS1299
- High performance microcontroller: Atmel SAM G55
- Up to 7 EEG channels and one audio envelope channel

**Environmental Noise Shaping** 

Hz environmental noise

- Up to 500 samples/s
- Bluetooth connectivity
- Low cost (\$200)

# **Compressed Sensing**

Compressive sensing (CS) is a technique of compressing acquired signals in real-time and in a low-power manner.

- Move bulk of computational effort in compression away from the battery-powered wireless node to a base station.
- Compression algorithm is designed to be simple (i.e. made of a few elementary operations)
- Decompression algorithm is inherently non-linear and usually more time- and energy-consuming.

#### **Rakeness CS**

Statistical tuning of the CS algorithm to the EEG signals of interest, resulting in implicit signal filtering

- Matched features are enhanced
- Other sources like noise are attenuated





Tune Rakeness CS algorithm to filter out 60

**Sensor Noise Shaping** Unwanted sensor motion filtered using Rakeness CS



Power Measurements

Power consumption of the mobile EEG system was measured as a function of the compression ratio and number





# **Experimental Verification**

by providing a 1 kHz spike train with amplitudes of 850  $\mu$ V (attenuated from 12.7 mV).



Computational accuracy of NEO circuit measured Receiver operating characteristic showing detection rate (DR) vs. false positive rate (FPR). Spike amplitudes of  $55 - 900 \mu V$ 



With input spikes at 390 μV:

• 76% DR vs. 5% • 100% DR vs. 14%

**BRF**:

1600

of EEG channels being recorded • Diminishing returns as compression ratio is increased

• AFE contributes most to increase in power consumption as more channels are added (58% increase in consumption vs. 13% increase)

 Microcontroller processing cost was negligible compared to overhead











Phase II STTR award #FA8651-14-C-0107

**UMD** Engineering **Systems for Medicine** 

