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AER Protocol	

Bandwidth Reduction Factor† (BRF)	
With typical data acquisition scheme:	
40 kSamples/s  x  16 b/Sample  x  1 B/8 b = 80 kB/s	
	
With asynchronous readout:	
50 AP/s  x  8 b/AP  x  1 B/8 b = 50 B/s	
	
† per channel in a 16 channel system	
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•  Spike detector triggers event generator	
•  Row and column 

arbitration 
controls address 
generation	

•  Single spatial 
address per spike 
event	

Circuit Implementation	
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NEO requires three fundamental computations: 	
•  Derivative: Input capacitor 

preceding a high-gain inverting 
amplifier with resistive feedback	

•  Multiplier: Translinear four 
quadrant multiplier with core 
voltage loop created by six PMOS 
transistors	

•  Subtraction: Current-mode subtractor	

System Overview	

The system is an active micro-electrode array	
•  Array of sensor pixels	
•  Pixel: Electrode pair, bioamplifier, spike detection circuit, 

and Address Event Representation (AER) interface	
–  Bioamplifier: Operational Transconductance 

Amplifier (OTA): Av= Cin/CY = 46 dB, Cin = 20 pF, CY = 
100 fF, Passband: 280 mHz to 8.1 kHz	

–  Spike Detector: Nonlinear Energy Operator (NEO) 
algorithm	

–  AER: Asynchronous readout with full handshaking 
or autonomous self-timing operation	

•  Digital pulses sent off-chip to external Data Acquisition 
system (DAQ)	
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Introduction	
Sampling bio-potential data yields a large 
amount of data, however the actual information 
content of the signals is much sparser than the 
data being collected.	
	
•  Transient waveforms require high sampling 

rates:	
40 kSamples/s  x  16 b/Sample  x  32 channels 
à 154 MB/min	

•  Spike information is quite sparse:	
< 100 Spikes/s  x  32 channels à < 3.75 kB/
min 	

	
Instead of reading out the raw data by itself, we 
can match the asynchronous signal source with 
an event-driven readout	
•  This requires local spike detection capability	
•  Bandwidth requirements are reduced by a 

factor of 1600	

 Event-Based Readout in Lab-on-CMOS: Spike Processing	

Introduction	
The study of brain diseases such as schizophrenia has 
traditionally been performed using laboratory-based EEG 
and MEG devices. Wireless mobile sensing platforms can 
be a valuable tool in studying EEG paeerns:	
•  Recording responses that are uncontrolled (e.g. 

hallucinations)	
•  Facilitates patient comfort	
	

Problem:	
•  Baeery lifetime: system should run continuously 

throughout the day	

Proposed Solution:	
•  Compress EEG signals prior to data transmission in a 

computationally-simple manner	

Low Cost Mobile EEG	
Built from commercial-of-the-shelf components 
and facilitates on-board compressive sensing.	

Compressed Sensing	
Compressive sensing (CS) is a technique of compressing acquired signals in real-time and in a low-power manner.	
•  Move bulk of computational effort in compression away 

from the baeery-powered wireless node to a base station.	
•  Compression algorithm is designed to be simple (i.e. 

made of a few elementary operations)	
•  Decompression algorithm is inherently non-linear and 

usually more time- and energy-consuming.	

•  Biopotential ADC: TI ADS1299	
•  High performance microcontroller: 

Atmel SAM G55	
•  Up to 7 EEG channels and one	

audio envelope channel	
•  Up to 500 samples/s	
•  Bluetooth connectivity	
•  Low cost ($200)	

Environmental Noise Shaping	
Tune Rakeness CS algorithm to filter out 60 
Hz environmental noise	

SNS map 

Rakeness CS	
Statistical tuning of the CS algorithm to the EEG 
signals of interest, resulting in implicit signal 
filtering	
•  Matched features are enhanced	
•  Other sources like noise are aeenuated	

Sensor Noise Shaping	
Unwanted sensor motion filtered 
using Rakeness CS	

Statistical Bandwidth Reduction: Compressed EEG Sensing	

Phase II STTR award 
#FA8651-14-C-0107 

Awards 
CCF0238061 & 
IIS0515873 

Acknowledgements: Chip fabrication 
by MOSIS. EEG recordings provided 

by Alessandro Presacco. 

UMD Engineering 
Systems for Medicine	

Power Measurements	
Experimental Verification	
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Computational accuracy of NEO circuit measured 
by providing a 1 kHz spike train with amplitudes 
of 850 µV (aeenuated from 12.7 mV).	
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Receiver operating characteristic showing detection rate (DR) 
vs. false positive rate (FPR). Spike amplitudes of 55 – 900 µV 
(10 – 160 mV un-aeenuated). 	

With input spikes 
at 390 µV:	
•  76% DR vs. 5% 

FPR	
•  100% DR vs. 14% 

FPR	

Standard CS	

Rakeness CS	

Averaged AEP Response, CR = 16	

Power consumption of the mobile EEG system was measured as a function of the compression ratio and number 
of EEG channels being recorded	
•  Diminishing returns as compression ratio 

is increased	
•  AFE contributes most to increase in 

power consumption as more channels are 
added (58% increase in consumption vs. 
13% increase)	

•  Microcontroller processing cost was 
negligible compared to overhead	


