

Next Generation Molding Technologies

MECHANICAL ENGINEERING

S.K. Gupta, G. Fowler, I. Golden, R. Gouker, A. Priyadarshi, and B. Spranklin

Injection Molding Using Permanent Multi-Piece Molds: Space Puzzle Molds

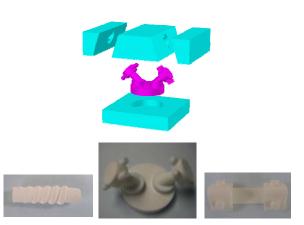
Enable Manufacturing of Geometrically Complex Objects

- Objects that are impossible to make using traditional twopiece molds
- Potential users: automobile parts, consumer appliance housings

Current Research Thrust

- Development of design for manufacturing guidelines for parts being produced using space puzzle molds
 - draft angles, section dimensions, tolerances
- Development of geometric reasoning algorithms for automated design of multi-piece permanent molds
 - · disassembly-based spatial partitioning
- Development of geometric reasoning algorithms for efficient cutter path planning
 - hybrid patterns, adaptive feed rate adjustments

Low Temperature Molding Using Sacrificial Multi-Piece Molds


• Enable Manufacturing of Geometrically Complex Objects

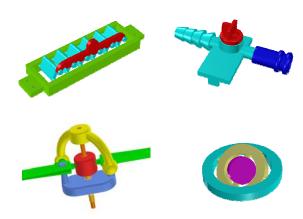
- Objects that are impossible to make using permanent molding processes due to demolding problems
 - gelcasting of complex ceramic parts
- Potential users: ceramic industry

Current Research Thrust

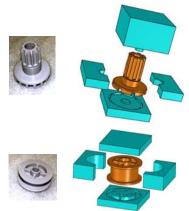
- Development of a molding process that combines CNC machining, layered fabrication, and injection molding for mold fabrication
 - large objects with very small features
 - low cost molds
- Development of geometric reasoning algorithms for automated design of multi-piece sacrificial molds
 - · accessibility and process driven spatial partitioning

Examples of Objects Produced Using Sacrificial Multi-Piece Molds

Multi-Stage Molds for Producing Multi-Material Objects


• Enable Manufacturing of Multi-Material Objects

- Difference in compliance, color, and hardness can be utilized to create products with superior performance
 - In-mold assembly: no assembly operations are needed afterwards
- Potential users: automobile industry, furniture industry, toy industry, consumer products


Current Research Thrust

- Development of a new multi-stage molding process for providing geometrically complex interfaces
 - chemical, macroscopic, and mesoscopic interfaces
 - articulated assemblies
- Development of geometric reasoning algorithms for automated design of multi-stage molds
 - disassembly and assembly driven spatial partitioning

Examples of Parts Produced Using Multi-Stage Molding

