

SCHOOL OF ENGINEERING

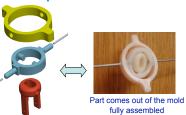
# In-Mold Assembly: A New Approach to Assembly Automation

Students: A. Ananthanarayanan, W. Bejgerowski, D. Mueller, G. Ramu, P. Ward Advisor: S.K. Gupta

Sponsors: NSF and ARO MURI

In-Mold Assembly Concept




#### Goals

- · Develop mold design templates to develop mesoscale joints
- · Develop model to estimate deformation of premolded components and alternate ways to control it
- · Develop an understanding of in-mold assembly clearances
- Develop design templates to embed electronics and actuators in mold
- · Develop models to understand heat dissipation of actuators embedded in polymers

This design contains parts whose largest dimension is less than 2 mm

Small parts and complex geometry make it very difficult to assemble this MAV swashplate







#### Capabilities



Prismatic joint



**Universal Joint** 



## Process Characterization and Modeling

#### Unidirectional Filling for In-Mold Assembly of Mesoscale Revolute Joints



as a radial supports

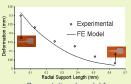
Plastic deformation of



premolded components

Second stage part (LDPE) part (ABS). Part with 90° pin diameter: Part with 0° 0.8 mm Orientation

Second stage Injection with supported premolded components


Bi-directional Filling for In-Mold Assembly of

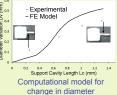
Mesoscale Revolute Joints

location Premolded stage melt

component

misalignment of gates




Computational model for plastic deformation

- We were the first research group to successfully realize mesoscale revolute joint using in-mold assembly
- 25% radial support found to be optimum for mold geometry and ABS/LDPE combination

## Joint Clearances during In-Mold Assembly of Mesoscale Revolute Joints



Change in premolded component dimensions due to second stage melt flow



- Premolded component undergoes axial plastic deformation due to compressive force applied by second stage polymer melt forming assembly clearances
- Change in diameter (D<sub>v</sub>) of the premolded component found to be related to support cavity length (L<sub>c</sub>)

## **Embedding Actuators**

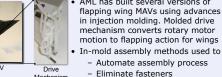
- We use thermally conductive polymer composites to create multi functional structures with embedded actuators
  - Anchoring of the embedded actuator
  - Dissipation of heat produced by the actuator
- · Coupled modeling approach:
  - Polymer melt flow inside the mold to obtain fiber orientations
  - Orthotropic thermal conductivity models from molding process to assess heat dissipation



In-mold assembled

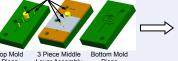


Coupled computational modeling approach


- · Research results:
  - 40% reduction in the operating temperature of the embedded
  - Polymers with k > 2 W/m-K do not require orthotropic thermal conductivity modeling

## **Applications** Flapping Wing MAV

### AML has built several versions of flapping wing MAVs using advances




Mechanism Small Bird built at AML



- Automate assembly process

- Eliminate fasteners
- Decrease weight



Laver Assembly Mold assembly for drive mechanism



Molded drive mechanism frame for Small Bird

|                    | Small Bird | Big Bird | Big Bird with vision | Big Bird with folding wings | Attri<br>differe |
|--------------------|------------|----------|----------------------|-----------------------------|------------------|
| Overall Weight     | 12.8 g     | 35.0 g   | 42.2 g               | 36.9 g                      |                  |
| Wing Span          | 34.3 cm    | 57.2 cm  | 57.2 cm              | 57.2 cm                     |                  |
| Flapping frequency | 12.1 Hz    | 4.5 Hz   | 4.5 Hz               | 4.5 Hz                      | 50               |
| Payload Capacity   | 2.5 a      | 12.0 a   | 4.8 g                | 10.0 a                      |                  |

ributes of ent MAVs It at AML

#### Miniature Robot



In-mold assembled

Mesoscale in-mold assembly methods utilized to manufacture 25 DOF hand

- Shape memory alloy (SMA) actuated robot developed by AML in collaboration with Robotics Automation Manipulation and Sensing (RAMS) Lab
- In-mold assembly methods used to
  - Downscale overall robot size
  - Significantly reduce part count
  - Eliminate fasteners



SMA actuated robot suitable for Neurosurgery



Orientation

Bi-directional filling

- · Alternative filling strategy to inhibit plastic deformation of premolded component
  - Premolded component deformation dependent Orientation on temporal misalignment of gates

Computational model

for plastic deformation