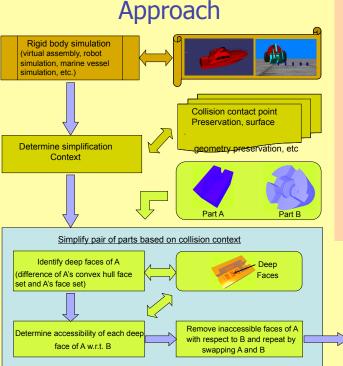
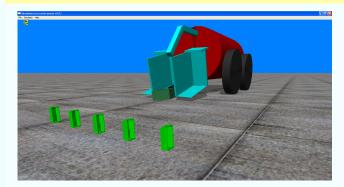


Physics Preserving Model Simplification for Rigid Body Dynamics Simulation

Student: Atul Thakur; Advisor: S. K. Gupta; Sponsor: National Science Foundation


Motivation


- Interactive rigid body simulation is used in many applications
 - VE based applications like assembly process training, Explosive Ordnance Disposal (EOD) robot training, etc.
 - Simulation based automatic discovery of robot dynamics and controller design
- Detailed CAD models slow down the rigid body dynamics simulation and interactive speeds cannot be achieved
- Model simplification schemes used for graphics rendering is not suitable for rigid body dynamics simulation as collision contact points are altered
- Simulation context based model simplification is needed that can preserve the physics

Preliminary Results

Model Pair		Unsimplified Facet Count		Simplified Facet Count	
Α	В	Α	В	Α	В
	15	6334	44	5749	26
	87	1806	44	890	26
	17	800	44	544	26
	15	1882	44	1756	26
F. F.	87	428	44	190	26

Number of facets reduced after the simplification ranges from 6 to 55% depending on part complexity

Improvement in frame rates in the visualization during dynamics simulation (using Open Dynamics Engine) was found to be 35% in our tests

Objectives

- Identify the main characteristics of the rigid body dynamics affecting the simulation time and results to generate simplification contexts
- Identify a suitable canonical geometric representation to enable model simplification
- Simplify model using the identified context and measure the accuracy of simulation using simplified models
- Develop a computational framework for optimizing the simplification process

Simplified Model of part A

Unsimplified facet count = 492

Simplified Facet count = 114

Simplified Model of part B

Unsimplified facet count = 1200

Simplified Facet count = 656

Future Research

- Simplification context in marine vessel dynamics simulation is ocean wave interaction
 - The surface geometry exposed to the wave velocity field must be preserved
- This simplification will reduce simulation time leading to meta-modeling of dynamics which can be used for determining high fidelity real time response of marine vessels
- Meta models will be helpful in realizing simulation based discovery of navigation and control strategies