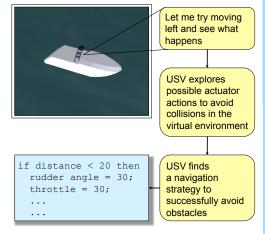


Developing Autonomy for USV by Using Virtual Environments



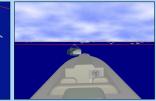
S. K. Gupta, Bob Kavetsky, Steve Lubard, Max Schwartz, Petr Svec, and Atul Thakur Sponsor: Office of Naval Research

Motivation

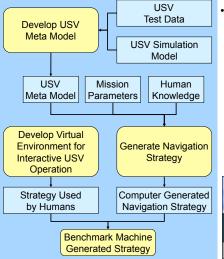
- USV may need to perform a large number of missions
 - Some of the missions can be quite complex and may involve many different tasks
 - Different tasks require different algorithms
 - Handling contingencies requires additional effort
- The process of humans conceiving the strategy for autonomous operations and coding them requires significant effort!
- Can USV develop a robust navigation planning strategy from a large number of simulations for a given mission?
- Planning strategy will be expressed in terms of high level control commands
 - These commands then can be automatically translated to a programming language
 - No need for any human programming for a specific task or contingency

Simulation Based Discovery and Innovation Example

A mission planning system for automatically generating navigation strategy for USV


- The current version of the system is able to generate human-readable navigation strategies and improve already existing ones
 - A blocking strategy was automatically discovered in a simulation environment with two competing boats
 - The USV training is performed using a computergenerated skilled intruder
 - The systems evolves the USV's and intruder's strategies simultaneously in an emergent co-evolutionary process

Inmanned surface vehicle (USV


 An obstacle avoidance strategy was automatically discovered by a simulated evolutionary process in a static scene

USV's intended path Moving obstacles

Physics Based Meta Model

- Due to high computational requirements, the physics-based simulator cannot be directly used for generating navigation strategy
- Need to use its simplified version generated using physics-based simulations

Overview of Overall Approach

Project Goals

- A mission planning system which can automatically generate a human-readable navigation strategy for a given USV and its mission
 - The system should produce a strategy that leads to the USV behaviors that are at least 80% as efficient as the behaviors exhibited by the human-driven USV
 - The efficiency of the human-generated strategy should be easily compared to the efficiency of the computer-generated strategy using a virtual environment based benchmarking tool
 - The benchmarking tool should be able to automatically record human player's strategy which can be further integrated into USV's navigation strategy
 - Navigation strategy should be represented in a high-level programming language which can be directly interpreted on a low-level controller and can enable human verification

Strategy Benchmarking

- Developed a benchmarking tool where two humans or a human and a computer can compete against each other
 - This tool was used to compare the efficiency of the human-generated blocking strategy to the computer-generated blocking strategy
 - In the current benchmarking setting, the resulting USV's blocking strategy is better than average human players
- We expect the system to generate navigation strategies comparable in quality to the humangenerated ones for even more complicated tasks

