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Temperature-tracking Based Run-time Trojan Detection

Motivation

Test-time approaches: may miss some Trojan-infected ICs due to:
« Limited amount of test time

« Lack of Trojan activation

» Inactive Trojans have small impact on delay/power

Run-time monitoring approaches:
* Monitor the IC throughout its lifecycle

Need a low-overhead solution

Avg. Power Consumption of RS232-T900 Benchmark
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Key Observations:
» Active Trojans can cause large changes in power profile but

monitoring power is expensive
* Changes in power will lead to changes in thermal profile
« Thermal profile can be measured with thermal sensors, which

have low-overhead and are on most of the chips
Thermal Sensor [Zhang et al, ISPD’10]
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Problem Definition

Given two hypotheses of the system’s state:
{H o The stateis Trojan — free or Trojan — inactive
H,

The state is Trojan — active
Use thermal sensor observations to determine if the IC’s state
(characteristics) correspond to Hy or Hy

( Design ) ( Benchmarks ) ( Thermal Model )

Y Y Y
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Online Trojan Detection Mechanisms

run-time

RC Thermal Model (HOTSPOT) [Skadron et al, ISCA'03]
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« Sensors are placed in a way to minimize correlations between
them following the work in [Zhang et al, ISPD’2010]
» IC parameter calibration is done to offset the effect of process

variation following the steps in [Hu et al, DATE’2013]

Online Detection Methods

Local Approach
« Measurements are taken and processed locally with simple
thresholding based on hypothesis testing

« Key feature: very low overhead

Hypothesis Testin

Hy or Hy

Voting I—)

Hypothesis Testin

Hypothesis Testin

 Measurements are taken and processed together
» Use (Extended) Kalman Filter to track chip’s thermal states

« Compare the autocorrelation of the error matrix with a threshold
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Simulation Results

and RE process while sensitive to malicious modifications.
lllustration of Support Vector Machine (SVM)
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* One-class SVM is used when only samples from one class is
known, since we cannot know what modifications will be made.
« Several features are extracted by comparing the golden layout with

images obtained from RE: centroid difference, area difference, etc.

Simulation Results

Detection Accuracy of Different Types of Trojans

Average (10 benchmarks)
Approach | #sensors —
t, f, Average detection time (ms)

4 90% 61.4% 42.98

Local 16 90% 0% 101.9
32 90% 0% 136.7

Global 4 100% 0% 44.67
(Extended 16 100% | 0% 33.78

Kalman

Filter) 32 100% 0% 27.14

t.-True positive rate f. -False positive rate

Reverse-engineering Based Hardware Trojan Detection

Motivation

Most of prior detection approaches require the existence of a golden
(Trojan-free) chip, but golden chips are hard to acquire. We need to
verify a chip is Trojan-free without the assumption of golden chip.

Reverse-engineering (RE) of an IC is the process of analyzing an IC’s
internal structures, connections, etc. through the following steps:

« Decapsulation P i

« Delayering
« Imaging

* Annotation
 Schematic creation
RE is arguably the strongest Trojan detection methods.

Challenges

* The last two steps of RE are very time-consuming and error-prone
* Process variation and noise in the RE process

ok

Our Proposed Approach

« We compare the images obtained by RE a golden layout (which is

assumed to be handy with the designers)

Benchmark | #of gates Trojan-free TA TD TP
S27 57 100% 100% 100% 99.8%
S298 283 100% 100% 100% 99.6%
S5378 3455 100% 100% 100% 100%
S15850 10984 100% 100% 100% 99.8%
S38417 30347 100% 100% 100% 100%
b18 122559 99.4% 100% 100% 100%

Summary of Merits

* Our method eliminates RE steps 4 and 5 which require lots of
manual effort and are error-prone

* Our method does not rely on golden IC

* Our method accounts for noise in the RE steps

* Our method is fully automated

IP Piracy Prevention Based on Signal Wire Permutation
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Permutation Cell

Interlocked Circuit

Obfuscated Circuit

Original Circuit

Signal Wire Permutation:

* Akey-based hardware obfuscation technique that hides and
permutes multiple wires of a netlist

Machine Learning Attack:

« Gradually improve a random key guess based on the observed
Hamming Distance (HD) between a obfuscated circuit F'(key) and a

functional circuit F obtained from open market
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determine how good a key is

» The effective key space is not large enough
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since 50% of the 2-bit permutation cells can be —
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correctly permuted by simple random guessing

Attack progress (after enhancement)
6

» The correlation between output HD and the key| * ; |
correctness is strong " E

Two security enhancement approaches:
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» Key space enlarging using 8-bit permutation 0
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* Reducing the correlation between output HD and

=0
o
=)

10°
# key tried

key correctness by creating a interlock structure

IP Piracy Prevention Based on 2.5D IC Technology
2.5D IC Security Benefits:

* The interposer can be fabricated in a trusted foundry to prevent complete

exposure of a design and thus prevent IP piracy
Secure Partitioning (Functionality obfuscation):

« Partitioning a netlist F into two sub-netlists :
Secure Design Flow

\ Secure Partitioning

F, and F, and hide cut-wires
« Goal: HD(F, F'(F1,F2) ) = 50%

* Normal approach: min-cut partitioning
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« Secure approach: select cut-wires with high [ Secure Placement & Routing |
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Secure placement (Layout obfuscation):

Secure
Fabrication

¥

Intergoser

[ —— |> ______________ l I

| Secure Integration |
¥

Qutsourced Qutsourced

|
: Fabrication Fabrication
: ; ;
I
|
|

* Reduce the correlation between layout

proximity and connection of two gates

« Goal: correctness = 0 (percentage of Compiste Crct
correctly guessed hidden wire) T
o 0 0 0 0 0

» Secure Approach: simulated annealing cost

function Cost = f(Area, Wirelength, Correctness)

Normal Partitioning +
Normal Placement

Secure Partitioning + Secure Placement

HD Correctness HD Correctness Area Wire-length
Overhead Overhead
13.62% 21.84% 47.75% 0% 6.17% 12.86%
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