Ending Hardware Attacks and IP Piracy

Chongxi Bao, Yang Xie, Domenic Forte and Ankur Srivastava

This work is supported by NSF Grant 1223233

fied Output	IP Piracy A malicious foundry may reverse-engineering layout files to obtain original netlist and he can gain profits by • Claiming the ownership of it • Overbuilding the IC.			
at each	Prior Defense Approaches:			
al can.	Split Manufacturing:			
	A chip is split into metal layer and active layer,			
	and the metal layer is fabricated in a trusted			
	foundry to prevent the complete exposure of			
	the design to offshore foundry			
ssumption	Hardware Obfuscation:			
n	 Inserting additional key-based logics to 			
oise	obfuscate the net-list			
vation	Key challenges:			
eads	Functionality obfuscation			
f				

	 Side-channel Attack Resilient Architecture Cache configurations that do not leak timing information 	Security Analysis and Enhancemen Hardware Obfuscation mode		
	 Opportunities in 3D integration 	$\begin{bmatrix} 1_1 & & & \\ 1_2 & & \\ 1_3 & & \\ 1_3 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_2 & & \\ 1_3 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ 1_2 & & \\ 1_3 & & \\ $		
ure	Security Analysis and Enhancement of Split Manufacturing in 2D IC	$\begin{vmatrix} 1_4 \\ 1_5 \\ (a) \end{vmatrix} = \begin{vmatrix} 1_3 \\ 1_4 \\ 1_5 \\ (b) \end{vmatrix} = \begin{vmatrix} 1_4 \\ 1_5 \\ (b) \end{vmatrix} = \begin{vmatrix} 1_4 \\ 1_5 \\ (b) \end{vmatrix}$		
plied	Split Manufacturing in 2D IC:	Reconfigurability / Hardware overheads		
S.	A 2D IC can be split into active device layer and metal layer	Three Hardware Obfuscation Models:		
an	Active layer (gates) is outsourced for advanced fabrication	XOR/XNOR locking		
′S.	 Metal layer (interconnection) is performed by a trusted 	Signal wire permutation		
С	foundry	Reconfigurable block		
acks	Attack Model: proximity attack + machine learning	Analysis and Enhancement:		
oto'991	attack	Security analysis of three models based on a		
	Proximity attack: two connected gates are usually placed	machine learning attack that intends to learn t		
1. N	close by	keys		
/U /1				

Machine learning attack: learn the hidden interconnection based on the observed output difference between

rk	#of gates	Trojan-free	TA	TD	TP
	57	100%	100%	100%	99.8%
	283	100%	100%	100%	99.6%
	3455	100%	100%	100%	100%
	10984	100%	100%	100%	99.8%
	30347	100%	100%	100%	100%
	122559	99.4%	100%	100%	100%

- Security enhancement techniques for each models to achieve the optimal defense results with low performance overheads

Why is the Attack Successful?

- The correct output response from a functional circuit can be utilized as a reference to determine how good a key is
- The effective key space is not large enough since 50% of the 2-bit permutation cells can be correctly permuted by simple random guessing
- The correlation between output HD and the key correctness is strong

Two security enhancement approaches:

- Key space enlarging using 8-bit permutation cells
- Reducing the correlation between output HD and $\frac{1}{5}$ key correctness by creating a interlock structure

IP Piracy Prevention Based on 2.5D IC Technology

2.5D IC Security Benefits:

- The interposer can be fabricated in a trusted foundry to prevent complete exposure of a design and thus prevent IP piracy
- **Secure Partitioning** (Functionality obfuscation): Partitioning a netlist F into two sub-netlists F_1 and F_2 and hide cut-wires
- Goal: HD(F, F'(F1, F2)) = 50%
- Normal approach: min-cut partitioning Secure approach: select cut-wires with high

controllability and observability

- Reduce the correlation between layout proximity and connection of two gates
- Goal: correctness = 0 (percentage of correctly guessed hidden wire)
- Secure Approach: simulated annealing cost
- function *Cost* = *f*(*Area*, *Wirelength*, *Correctness*)

Normal Partitioning + Normal Placement		Secure Partitioning + Secure F		
HD	Correctness	HD	Correctness	Area Overhead
13.62%	21.84%	47.75%	0%	6.17%

Outsourced

Fabrication t Chip 1 T