
Control and Management of Future Internet

Faculty: Richard J. La

Students: S.-H Chun, Y. Han, S. Pal, P. Ranjan, T. Ren, E. Seo,

P. Tinnakornsrisuphap

Background and History

Traditional telephone network

- Centralized intelligence concentrated at a few places
- Expensive and inflexible
- Guaranteed quality-of-service

Traditional Internet

- Limited intelligent mostly at the edge of the network
- Users/protocols assumed to be cooperative or benign
- Best-effort with no guaranteed quality-of-service
- Focus on tethered networks

Future Internet

- Demand for ubiquitous information access by mobile users
- Internet of things (IoT) short, bursty traffic generated by many small devices
- Highly distributed intelligence and management
- Greater security risks

Congestion control

- Increasing demand in the Internet from widely varying applications
- Current congestion control mechanism leads to poor performance over wireless links with large delays
- Showed parametric sensitivity of network stability and propagation of instability in multi-bottleneck cases
- Investigated stability of a family of rate control schemes in the presence of communication delays
 - Proposed rate control schemes with provable stability in the presence of arbitrary delays

Traffic engineering

- Existing static routing schemes suffer from inefficient resource utilization and slow adaption to traffic
- Designed an application-layer overlay network architecture for traffic engineering
- Does not require modifications to underlying routing protocols (e.g., OSPF, OLSR)
- Only makes use of estimated noisy, real-time measurements reported by overlay nodes

Cellular network management and resource allocation

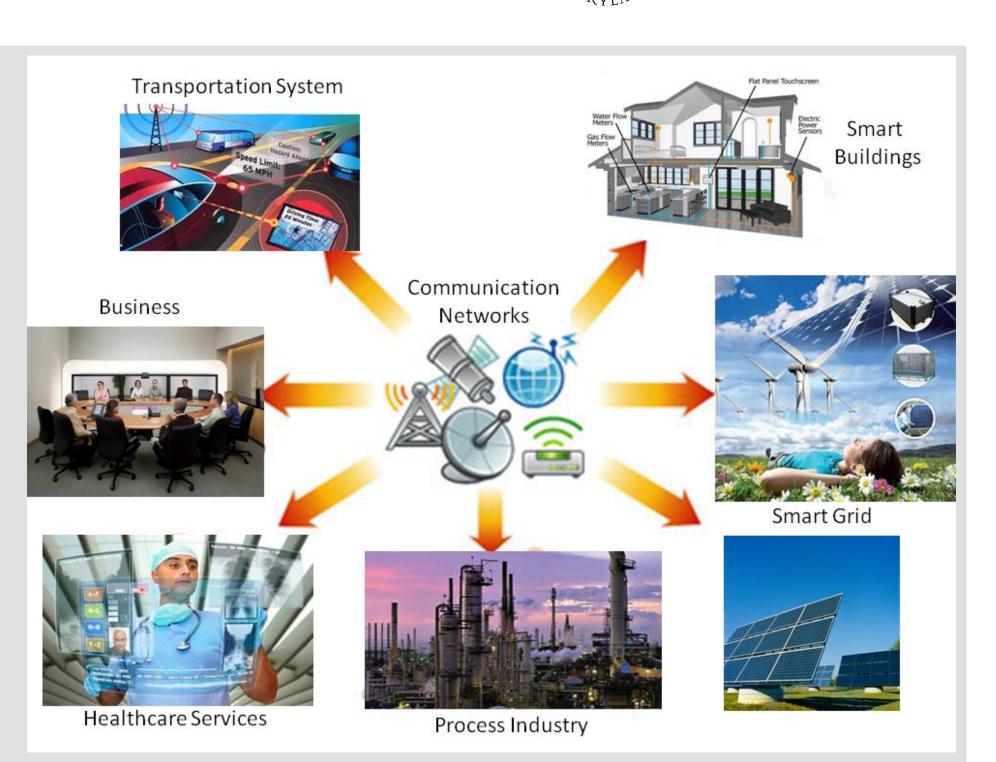
- Growing access to information through cellular networks (e.g., smart phones and tablets)
- Need for higher throughput and spectrum efficiency
- Spatial diversity of users via beamforming and MIMO systems
- Throughput optimal MAC scheduling scheme with beamforming
- Caveat: Larger and faster fluctuation in inter-cell interference with beamforming/MIMO systems
 - Inter-cell interference harder to estimate in advance without coordination of base stations
 - Designed new beamforming algorithms for dealing with unknown inter-cell interference at the users

Service level agreement design between service providers

- Previous studies on contract designs assume risk neutral players (i.e., content or network service providers)
- Presence of risk averse players significantly alters their interaction and resulting equilibria (i.e., feasible operating points)
- Demonstrated in the presence of information asymmetric
 - Some players may always have an incentive to lie about their private information
- Information asymmetry impedes introduction of new network services and applications
- Other players cannot tell whether some players are lying or not

Future Directions

Distributed network management based on game-theoretic framework


- Utility design for efficient network operation
- Learning algorithms with provable convergence to desired operating point

Interdependent security in networks

 Effects of interdependence network properties (e.g., assortativity, clustering) on both local and global network security

Interaction between different types of networks

- Example: Smart grids power grid vs. communication/control network
- Calls for more sophisticated network models

Multi-hop wireless networks

- Critical communication range for network connectivity with heterogeneous or correlated node mobility
 - Demonstrated sensitivity of critical communication range to correlation
- Topology-based routing (AODV, DSR, etc.) vs. position-based routing in large multi-hop wireless networks
- Overhead for topology maintenance (in topology-based routing) or location service (in position-based routing)
- Identified scaling law of overhead for (i) topology discovery/maintenance under topology-based routing and (ii) location service under proactive and reactive position-based routing
- Identified an order-optimal location service scheme (based on distributed hash table)
- Demonstrated smaller scaling law of overhead under position-based routing than topology-based routing
- Duration of available on-demand routes in multi-hop wireless networks
 - Investigated the distribution of the availability of routes discovered by on-demand routing schemes
- Illustrated that their distribution can be well approximated by an exponential distribution even with dependence among links along the routes
- Expected durations can be estimated from link parameters

Dynamic spectrum allocation and secondary market for spectrum trading

- Designed an optimal mechanism for allocating multiple units of frequency bands
 - incentive compatible and individually rational
 - Demonstrated the existence of an incentive for risk neutral sellers to cooperate in order to increase their expected profit from sales
 - Designed a revenue sharing scheme for maintaining cooperation among sellers with individual rationality

Interdependent security

- In many cases, security of an entity or organization dependent on security measures taken by others as well
- Examples: Cybersecurity, transportation security, epidemics and vaccination
- Effects of underlying network structure on security choices/measures of strategic agents largely unknown
- Demonstrated that as the interdependence network becomes more connected (i.e., denser)
- Local network risk/security seen by individual agents improves
- Global network risk/security (measured by probability of cascades) worsens