

Control of a Magnetostrictive Actuator with Application to Micropositioning

Xiaobo Tan/ John S. Baras and P. S. Krishnaprasad

Introduction

Magnetostriction:

Some ferromagnetic materials (e.g., Terfenol-D) have the following properties: strains are generated in response to an applied magnetic field; Mechanical stresses in the materials produce measurable changes in magnetization. This phenomenon can be used for actuation and sensing.

Applications:

Flight control, Machine control, Micro-positioning, Ultrasonics, Robotics, Vibration control, etc.

The Terfenol-D actuator and the LVDT sensor

Sectional view of the Terfenol-D actuator (by Etrema)

Micropositioning Control Problem:

Given a desired position of the actuator head, find the input current in the coil, such that the final value of the actual position matches the desired one.

Challenge:

The hysteretic behavior exhibited by magnetostrictive actuators presents a challenge for control.

Hysteresis in the magnetostrictive actuator

Value Inversion Approach

- The Preisach operator is used to model the hysteresis and the original control problem is formulated as a value inversion problem for the Preisach operator
- The discretized Preisach operator is treated as a finite state machine (FSM), and the value inversion problem is transformed into a state reachability problem for the FSM
- A state space reduction scheme is proposed to save storage space and computation time
- An algorithm is developed to generate the best representative state in each equivalent class of states

An elementary hysteron

A (discretized) Preisach operator

Dspace

ControlDesk

Experimental results

Given a sequence of 8 desired displacement values: 10, 30, 15, 40, 20, 40, 60, 50 (in microns), three schemes have been implemented to achieve the positioning goal.

Comparison of positioning errors

- Scheme 1 is better than Scheme 2, since as a trajectory inversion scheme, the latter does not allow input reversals for each desired value and has less control freedom than Scheme 1 does.
- Scheme 3 delivers the worst performance since the hysteretic behavior is not taken into account.

References:

[1] X. Tan, R. Venkataraman, P. S. Krishnaprasad, "Control of hysteresis: theory and experimental results", Proc. Of SPIE, vol. 4326, pp. 101-112