Binary bridge selection problem

Armand M. Makowski

Selecting between two bridges

The problem: Given two bridges, denoted A and B, of **equal** length, how should ants $n = 1, 2, \dots$ select one of the bridges so that **eventually all** of them select the **same** bridge.

The algorithm: We encode the branch selection for the $(n+1)^{rst}$ ant by the $\{A,B\}$ -valued rv S_{n+1} such that

$$S_{n+1} = A$$
 if and only if $U_{n+1} \le p_n$

where

- {U_n, n = 1,2,...} is a sequence of i.i.d. rvs uniformly distributed on the interval [0,1],
- p_n is the probability that the $(n+1)^{rst}$ ant selects the branch A; it is given by

$$p_n := \frac{(K+A_n)^{\mathsf{v}}}{(K+A_n)^{\mathsf{v}} + (K+B_n)^{\mathsf{v}}}$$

with $K \ge 0$ and v > 0 – Here A_n (resp. B_n) is the number of ants among the first n ants which select bridge A (resp. B)

Two-dimensional recursion

$$A_{n+1} = A_n + \mathbf{1} [U_{n+1} \le p_n]$$

 $B_{n+1} = B_n + \mathbf{1} [U_{n+1} > p_n]$, $n = 1, 2, ...$

The initial condition (A_1,B_1) is **independent** of the driving sequence $\{U_n, n = 1,2,...\}$, and satisfies

$$A_1 + B_1 = 1$$

E.g., $(A_1, B_1) = (1, 0)$ or $(A_1, B_1) = (0, 1)$.

Consequently,

$$A_n + B_n = n$$
, $n = 1, 2, ...$

Thus, we need only consider the evolution of the \mathbb{R}_+ -valued rvs $\{A_n, n = 1, 2, ...\}$ which is given through the **one**-dimensional recursion

$$A_{n+1} = A_n + \mathbf{1} [U_{n+1} \le p_n], \quad n = 1, 2, \dots$$

with

$$p_n = \frac{(K + A_n)^{V}}{(K + A_n)^{V} + (K + n - A_n)^{V}}$$

where the [0,1]-valued rv A_1 is **independent** of the driving sequence $\{U_n, n = 1, 2, ...\}$

Main results

Theorem 1 With 0 < v < 1, it holds that

$$\lim_{n\to\infty}\frac{A_n}{n}=\lim_{n\to\infty}\frac{B_n}{n}=\frac{1}{2}\quad a.s.$$

whence

$$\lim_{n\to\infty} \frac{A_n}{B_n} = 1 \quad a.s.$$

No reinforcement

Theorem 2 With v = 1, the sequence of rvs $\{\frac{A_n}{n}, n = 1, 2, ...\}$ converges a.s. to an [0, 1]-valued rv a^* ; its distribution depends on the initial condition A_1 .

Theorem 3 With 1 < v, it holds that

$$\lim_{n \to \infty} \max \left(\frac{A_n}{n}, \frac{B_n}{n} \right) = 1 \quad a.s.$$

with

$$\mathbb{P}\left[\lim_{n\to\infty}\frac{A_n}{n}=1\right]=\mathbb{P}\left[\lim_{n\to\infty}\frac{B_n}{n}=1\right]=\frac{1}{2}$$

An equivalent stochastic approximation

Change of variable

$$a_n := \frac{A_n}{n}, \quad n = 1, 2, \dots$$

so that

$$0 \le a_n \le 1, \quad n = 1, 2, \dots$$

The original dynamics can now be rewritten as

$$a_{n+1} = \frac{A_n}{n+1} + \frac{1}{n+1} \mathbf{1} [U_{n+1} \le p_n]$$

= $a_n + \frac{1}{n+1} (\mathbf{1} [U_{n+1} \le p_n] - a_n), \quad n = 1, 2, ...$

with the [0, 1]-valued rv a_1 independent of the i.i.d. driving sequence $\{U_n, n = 1, 2, ...\}$

Key observation:

This one-dimensional stochastic recursion is a stochastic approximation of the Robbins-Monro type (of a non-standard type)

Note that

$$p_n = P_v\left(a_n, \frac{K}{n}\right)$$

with

$$P_{\mathbf{v}}(a,c) := \frac{(a+c)^{\mathbf{v}}}{(a+c)^{\mathbf{v}} + (1-a+c)^{\mathbf{v}}}, \quad a \in [0,1], \ c \ge 0.$$

Ant algorithm = Positive feedback

but

Stochastic algorithm = Negative feedback!

A preparatory result and its consequences

Define the $[0, \frac{1}{4}]$ -valued rvs $\{V_n, n = 1, 2, ...\}$ by

$$V_n := \left| a_n - \frac{1}{2} \right|^2, \quad n = 1, 2, \dots$$

Proposition 1 Under the summability condition

$$\sum_{n=1}^{\infty} \frac{1}{n+1} |(2a_n - 1)(p_n - a_n)| < \infty \quad a.s.,$$
 (1)

there exists an $[0, \frac{1}{4}]$ -valued rv V such that

$$\lim V_n = V \quad a.s.$$

Corollary 1 Assume $v \neq 1$. Under the assumption (1), we have

$$Acc(a_n, n = 1, 2, ...) \subseteq \{0, 1, \frac{1}{2}\}$$
 a.s.

where $Acc(a_n, n = 1, 2, ...)$ denotes the set of accumulation points of the sequence $\{a_n, n = 1, 2, ...\}$, and the limiting rv V appearing in Theorem 1 is therefore an $\{0, \frac{1}{4}\}$ -valued rv.

The convergence (1) yields

$$\lim_{n \to \infty} \frac{n}{n+1} |(2a_n - 1)(p_n - a_n)| = 0 \quad a.s.$$

or equivalently,

$$\lim_{n\to\infty} (2a_n - 1)(p_n - a_n) = 0 \quad a.s.$$

Therefore,

$$(2\alpha-1)(P_{\mathbf{v}}(\alpha,0)-\alpha)=0, \quad \alpha \in \mathrm{Acc}(a_n, n=1,2,\ldots)$$

with

$$P_{\mathbf{v}}(\alpha,0) - \alpha = \frac{\alpha^{\mathbf{v}}}{\alpha^{\mathbf{v}} + (1-\alpha)^{\mathbf{v}}} - \alpha = 0$$
 iff $\alpha = 0$ or 1

so that the equation

$$(2\alpha - 1)(P_{\nu}(\alpha, 0) - \alpha) = 0$$

has only **three** possible solutions, namely $\alpha = 0, \frac{1}{2}, 1$

Proposition 2 When $v \neq 1$, the sequence of rvs $\{a_n, n = 1, 2, ...\}$ converges a.s. to an $\{0, \frac{1}{2}, 1\}$ -valued rv a^*

Establishing the summability condition (1)

We do so by showing instead that

$$\mathbb{E}\left[\sum_{n=1}^{\infty} \frac{1}{n+1} |(2a_n-1)(p_n-a_n)|\right] < \infty$$

Basic ingredients

- Martingale methods Take the expectation of V_{n+1} and use the martingale property for $\{M_n, n=1,2,\ldots\}$ with $\mathbb{E}[M_{n+1}] = \mathbb{E}[M_1] = 1, \quad n=1,2,\ldots$
- **Boundedness** of $\{V_n, n = 1, 2, ...\}$ with $0 \le V_n \le 1, n = 1, 2, ...$
- Properties of P_V(a,c) Concavity/convexity properties on [0, ½] are determined by the value of ν, namely ν < 1 vs. 1 < ν.