Selecting between two bridges

The problem: Given two bridges, denoted A and B, of equal length, how should ants $n=1,2, \ldots$ select one of the bridges so that eventually all of them select the same bridge.
The algorithm: We encode the branch selection for the $(n+1)^{r s t}$ ant by the $\{A, B\}$ valued rv S_{n+1} such that
$S_{n+1}=A$ if and only if $U_{n+1} \leq p_{n}$
where

- $\left\{U_{n}, n=1,2, \ldots\right\}$ is a sequence of i.i.d. rvs uniformly distributed on the interval $[0,1]$,
- p_{n} is the probability that the $(n+1)^{\text {rst }}$ ant selects the branch A; it is given by
$p_{n}:=\frac{\left(K+A_{n}\right)^{v}}{\left(K+A_{n}\right)^{\mathrm{v}}+\left(K+B_{n}\right)^{\mathrm{v}}}$
with $K \geq 0$ and $\mathrm{v}>0-$ Here A_{n} (resp. B_{n}) is the number of ants among the first n ants which select bridge A (resp. B)

Two-dimensional recursion

$$
\begin{aligned}
& A_{n+1}=A_{n}+\mathbf{1}\left[U_{n+1} \leq p_{n}\right], \quad n=1,2, \ldots \\
& B_{n+1}=B_{n}+\mathbf{1}\left[U_{n+1}>p_{n}\right], \quad n
\end{aligned}
$$

The initial condition $\left(A_{1}, B_{1}\right)$ is independent of the driving sequence $\left\{U_{n}, n=\right.$ $1,2, \ldots\}$, and satisfies $\quad A_{1}+B_{1}=1$
E.g., $\left(A_{1}, B_{1}\right)=(1,0)$ or $\left(A_{1}, B_{1}\right)=(0,1)$.

Consequently,

$$
A_{n}+B_{n}=n, \quad n=1,2, .
$$

Thus, we need only consider the evolution of the \mathbb{R}_{+}-valued rvs $\left\{A_{n}, n=1,2, \ldots\right\}$ which is given through the one-dimensional recursion

$$
A_{n+1}=A_{n}+\mathbf{1}\left[U_{n+1} \leq p_{n}\right], \quad n=1,2, .
$$

with

$$
p_{n}=\frac{\left(K+A_{n}\right)^{\mathrm{v}}}{\left(K+A_{n}\right)^{\mathrm{v}}+\left(K+n-A_{n}\right)^{\mathrm{v}}}
$$

where the $[0,1]$-valued rv A_{1} is independent of the driving sequence $\left\{U_{n}, n=\right.$ where the
$1,2, \ldots\}$.

Main results

Theorem 1 With $0<v<1$, it holds that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{A_{n}}{n}=\lim _{n \rightarrow \infty} \frac{B_{n}}{n}=\frac{1}{2} \quad \text { a.s. } \\
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=1 \quad \text { a.s. }
\end{gathered}
$$

whence

No reinforcement
Theorem 2 With $v=1$, the sequence of $r v s\left\{\frac{A_{n}}{n}, n=1,2, \ldots\right\}$ converges a.s. to an $[0,1]$-valued $r v a^{*}$; its distribution depends on the initial condition A_{1}.

Theorem 3 With $1<v$, it holds that

$$
\lim _{n \rightarrow \infty} \max \left(\frac{A_{n}}{n}, \frac{B_{n}}{n}\right)=1 \quad \text { a.s. }
$$

with

$$
\mathbb{P}\left[\lim _{n \rightarrow \infty} \frac{A_{n}}{n}=1\right]=\mathbb{P}\left[\lim _{n \rightarrow \infty} \frac{B_{n}}{n}=1\right]=\frac{1}{2}
$$

$$
\begin{aligned}
& \text { An equivalent stochastic approximation } \\
& \hline \text { Change of variable } \\
& \text { so that } \quad a_{n}:=\frac{A_{n}}{n}, \quad n=1,2, \ldots \\
&
\end{aligned}
$$

The original dynamics can now be rewritten as

$$
\begin{aligned}
a_{n+1} & =\frac{A_{n}}{n+1}+\frac{1}{n+1} \mathbf{1}\left[U_{n+1} \leq p_{n}\right] \\
& =a_{n}+\frac{1}{n+1}\left(\mathbf{1}\left[U_{n+1} \leq p_{n}\right]-a_{n}\right), \quad n=1,2, . .
\end{aligned}
$$

with the $[0,1]$-valued rv a_{1} independent of the i.i.d. driving sequence $\left\{U_{n}, n=1,2, \ldots\right\}$.

$$
\begin{aligned}
& \text { Key observation: } \\
& \text { nensional stochasti }
\end{aligned}
$$

This one-dimensional stochastic recursion is
This one-dimensional stochastic recursion is
a stochastic approximation of the Robbins-Monro type (of a non-standard type)
Note that

$$
p_{n}=P_{\mathrm{v}}\left(a_{n}, \frac{K}{n}\right)
$$

with

$$
P_{\mathrm{v}}(a, c):=\frac{(a+c)^{\mathrm{v}}}{(a+c)^{\mathrm{v}}+(1-a+c)^{\mathrm{v}}}, \quad a \in[0,1], c \geq 0 .
$$

Ant algorithm = Positive feedback

Stochastic algorithm = Negative feedback

A preparatory result and its consequences

$$
\text { Define the }\left[0, \frac{1}{4}\right] \text {-valued rvs }\left\{V_{n}, n=1,2, \ldots\right\} \text { by }
$$

$$
V_{n}:=\left|a_{n}-\frac{1}{2}\right|^{2}, \quad n=1,2, .
$$

Proposition 1 Under the summability condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n+1}\left|\left(2 a_{n}-1\right)\left(p_{n}-a_{n}\right)\right|<\infty \quad \text { a.s. } \tag{1}
\end{equation*}
$$

there exists an $\left[0, \frac{1}{4}\right]$-valued rv V such that $\lim _{n \rightarrow \infty} V_{n}=V \quad$ a.s.

Corollary 1 Assume $\mathrm{v} \neq 1$. Under the assumption (1), we have

$$
\operatorname{Acc}\left(a_{n}, n=1,2, \ldots\right) \subseteq\left\{0,1, \frac{1}{2}\right\} \quad \text { a.s. }
$$

where $\operatorname{Acc}\left(a_{n}, n=1,2, \ldots\right)$ denotes the set of accumulation points of the sequence $\left\{a_{n}, n=1,2, \ldots\right\}$, and the limiting rv V appearing in Theorem 1 is therefore an $\left\{0, \frac{1}{4}\right\}$-valued rv.

The convergence (1) yields

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}\left|\left(2 a_{n}-1\right)\left(p_{n}-a_{n}\right)\right|=0 \quad \text { a.s. }
$$

or equivalently,

$$
\lim _{n \rightarrow \infty}\left(2 a_{n}-1\right)\left(p_{n}-a_{n}\right)=0 \quad \text { a.s. }
$$

Therefore,

$$
(2 \alpha-1)\left(P_{v}(\alpha, 0)-\alpha\right)=0, \quad \alpha \in \operatorname{Acc}\left(a_{n}, n=1,2, \ldots\right)
$$

with

$$
P_{v}(\alpha, 0)-\alpha=\frac{\alpha^{v}}{\alpha^{v}+(1-\alpha)^{v}}-\alpha=0 \quad \text { iff } \quad \alpha=0 \text { or } 1
$$

so that the equation

$$
(2 \alpha-1)\left(P_{v}(\alpha, 0)-\alpha\right)=0
$$

has only three possible solutions, namely $\alpha=0, \frac{1}{2}, 1$
Proposition 2 When $v \neq 1$, the sequence of $r v s\left\{a_{n}, n=1,2, \ldots\right\}$ converges a.s. to an $\left\{0, \frac{1}{2}, 1\right\}$-valued rv a^{*}

Establishing the summability condition (1)
We do so by showing instead that

$$
\mathbb{E}\left[\sum_{n=1}^{\infty} \frac{1}{n+1}\left|\left(2 a_{n}-1\right)\left(p_{n}-a_{n}\right)\right|\right]<\infty
$$

Basic ingredients

- Martingale methods - Take the expectation of V_{n+1} and use the martingale property for $\left\{M_{n}, n=1,2, \ldots\right\}$ with $\mathbb{E}\left[M_{n+1}\right]=\mathbb{E}\left[M_{1}\right]=1, \quad n=1,2, \ldots$
- Boundedness of $\left\{V_{n}, n=1,2, \ldots\right\}$ with $0 \leq V_{n} \leq 1, \quad n=1,2, \ldots$
- Properties of $P_{v}(a, c)$-Concavity/convexity properties on $\left[0, \frac{1}{2}\right]$ are determined

