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Selecting between two bridges

The problem: Given two bridges, denoted A and B, of equal length, how should
ants n = 1,2,... select one of the bridges so that eventually all of them select the
same bridge.

The algorithm: We encode the branch selection for the (n-+1)" ant by the {A, B}-
valued rv S+ such that

Spp1=A ifandonly if U,y < py
where

o {U,, n=1,2,...} is a sequence of i.i.d. rvs uniformly distributed on the
interval [0, 1],

® py is the probability that the (n+ 1)"" ant selects the branch A: it is given by
- (K+A)"
P KA + (KB,

with K > 0 and v > 0 — Here A, (resp. B,) is the number of ants among the
first n ants which select bridge A (resp. B)

Two-dimensional recursion

Ans1=An+ 1{Ups1 < py)

. 1,2,...
Bui1 = By+ 1{Ups1 > py)

The initial condition (A;,B;) is independent of the driving sequence {U,, n =
1,2,...}, and satisfies
A +B =1.

E.g.. (A1.B1) = (1.0) or (A},B1) = (0.1).
Consequently,
Ap+By=n, n=12,...
Thus, we need only consider the evolution of the R -valued rvs {A,, n=1,2,...}

which is given through the one-dimensional recursion

Aps1 =An+1[Un1 < pa], n=12,...

_ (K +An)"
T (KAL) (K+n—A)Y’

where the [0,1]-valued rv A; is independent of the driving sequence {U,, n =
1,2,...}.

Pn

Main results

Theorem 1 With 0 < v < 1, it holds that

whence

No reinforcement

Theorem 2 With v = 1, the sequence of rvs {A,—, n=1,2,...} converges a.s. to
an (0, 1]-valued rv a*; its distribution depends on the initial condition A.

Theorem 3 With 1 < v, it holds that

. Ay By
lim max { —, —
n—w n’on

An equivalent stochastic approximation

Change of variable
A
ayi=—", n=12,...
n
so that
0<a, <1, n=1.2,...

The original dynamics can now be rewritten as

A 1
o+ ——1{Ups1 < pu]

An+1
n+l n+l

1
ﬂn**m(l[Uml <pul=an), n=12,...

with the [0, 1]-valued rv @) independent of the i.i.d. driving sequence {U,, n=1,2,...}.

Key observation:
This one-dimensional stochastic recursion is
a stochastic approximation of the Robbins-Monro type (of a

Note that

K
Pn="F (am ;)

(a+0)

Py(a,c) = @t +—atov

acl0,1],¢>0.

Ant algorithm = Positive feedback
but

Stochastic algorithm = Negative feedback!

A preparatory result and its consequences

Define the [0, }]-valued rvs {V,, n=1.2,...} by

12
Vo= “"_i . on=1.2,...

Proposition 1 Under the summability condition
- 1
"; oy [(2an = 1)(pn—an)| <o a.s.,

there exists an [0, §]-valued rv V such that

limV,=V a.s.
e

Corollary 1 AssumeV # 1. Under the assumption (1), we have
1
Acc(a,, n=1,2,...) C {0, 1.5} a.s.
where Acc(ay, n=1,2,...) denotes the set of a lation points of the seq

{ay, n=1,2,...}, and the limiting rv V appearing in Theorem 1 is therefore an
{0. 1 }-valued rv.

The convergence (1) yields
. n
"an;m |(2ay—1)(pp—an)| =0 a.s.
or equivalently,
I!im (2a,—1)(pn—an) =0 a.s.
Therefore,

(20— 1)(Py(0,0) —at) =0, @€ Acc(a,, n=1,2,...)

o .
Pv(a.O)—a:m—azo iff a=0orl
so that the equation
(20— 1)(Py(0,0) —ot) =0

has only three possible solutions, namely o = 0, 5,

Proposition 2 When v # 1, the sequence of rvs {a,,n = 1,2,...} converges a.s. to
an {0,5.1}-valued rv a*

Establishing the summability condition (1)

We do so by showing instead that

o
E ’;mHZan—l)(Pn—ﬂnﬂ <eo

Basic ingredients

e Martingale methods — Take the expectation of V| and use the martingale prop-
erty for {M,, n=1,2,...} withEM, || =E[M|=1, n=1.2,...

e Boundedness of {V,,, n=1.2,...} with0<V, <1, n=12,...

 Properties of P,(a,c) — Concavity/convexity properties on [0, %] are determined
by the value of v, namely v < 1 vs. | <v.




