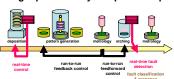


Chemical Sensing and Advanced Process Control for NORTHROP GRUMMAN **AlGaN/GaN HEMT Manufacturing**

Soon Cho, Michael E. Aumer, Darren B. Thomson, Dan Janiak, Gary W. Rubloff, Deborah P. Partlow

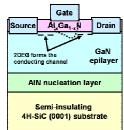
High Performance Applications

GaN-based electronic devices for high frequency, high power applications, such as radar electronics

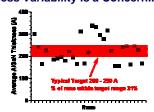


Challenges

Growth of GaN epi films and GaN-based alloys with reproducibility and quality constraints that are much higher relative to optoelectronic applications

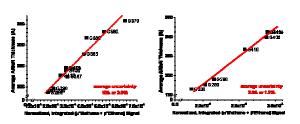

Approach

Advanced Process Control (APC) already pervasive in the Si ULSI industry is applied to the GaN-based processes to bring reproducibility and process optimization

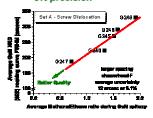


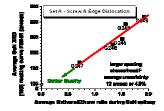
GaN-based Heterostructure Design

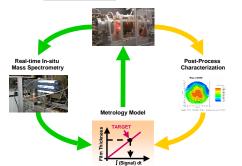
Multiple material parameters across the multi-layer structure must be cooptimized > Direct consequences in terms of device performance



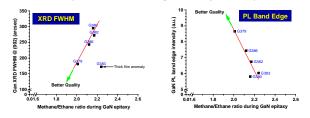
Process Variability is a Concern...


AIGaN Cap Laver Thickness Metrology

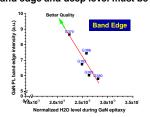

Sensor-based metrology can predict/control AlGaN thickness to within 3A or 1%

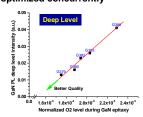

GaN Epilayer Crystal Quality Prediction

- Based on intrinsic process chemistry two major byproducts Methane & Ethane representing different reaction pathways
- Monitoring the Me/Et ratio predicts product crystal quality to ~ 5% precision

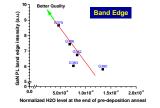


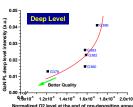
Sensor-based REAL-TIME Advanced Process Control




GaN Epilayer Photoluminescence Quality Prediction ... Same Me/Et ratio predicts PL band edge intensity to ~ 5% precision

Lower Me/Et ratio produces better quality (XRD, PL band edge) → Surface reaction (Ethane) pathway desired


... GaN Epilayer Photoluminescence Quality Prediction Band edge and deep level must be optimized concurrently



Low impurity condition must be established prior to GaN growth step → Can predict, but little room for course correction during GaN step itself

Pre-process Contamination Control is a key

- Reduce impurity levels in reactor through pre-process purge, anneal, and R2R bake-out
- Watch for impurity levels to drop below critical limit to guarantee acceptable PL quality

CONCLUSIONS

- In-situ metrology is key to achieving real-time APC
- GaN for advanced electronic application faced with serious manufacturing hurdles
- Chemical sensing in GaN MOCVD for Advanced Process Control
 - Accelerated learning at R&D stage
 - Manufacturing reproducibility
 - Insight into intrinsic chemistry & process
- Extensive fault detection & management in use already
- Precision metrology for critical AlGaN layer thickness (20-25nm) to ~1% in real-time demonstrated
- Accurate prediction of product quality (crystal quality, PL) in real-time demonstrated
- APC benefits exploited by Northrop Grumman development
 - AIGaN thickness control
 - Pre-process contamination control