
Dual-Based Heuristics for the
Connected Facility Location and Related Problems

M. Gisela Bardossy and S. Raghavan

HyNet

Problem Description

These problems typically arise in the design of
telecommunication networks where open facilities need
to communicate with each other. For example, in data
distribution and management problems.

Computational Experiments

Dual-Based Heuristic
Dual-Ascent (DA)
•  Apply a DA procedure for the Steiner tree problem
•  Obtain a dual solution (lower bound) and feasible

solution (upper bound) for the Steiner tree problem
Sequential Improvements
•  Construct a minimum spanning tree on the set of open

facilities and selected Steiner nodes
•  Eliminate any Steiner node with degree two or less in the

Steiner Tree (when triangle inequality is satisfied)

Local Improvements
•  Order open facilities in increasing order of

•  Node degree in the Steiner Tree
•  Number of customers served

•  Remove open facilities one at a time in order and
compare change in the solution cost

•  If removal results in an improvement, update
solution; otherwise, restore open facility into
solution

•  Repeat until no more improvements are possible

Conclusions
•  For our test problems our heuristic generated solutions

that were on average within 6% from optimality, and in
the worst case instances within 10% from optimality.

•  Results are consistent across a wide range of parameters.
•  Our proposed heuristic yields significantly better

solutions than the UFL approach and more consistent
gaps than the VNS heuristic.

•  The procedure is extremely fast on complete graph
problems and relative fast on large-scale instances.

UFL Heuristic

We defined an uncapacitated facility location (UFL)
heuristic to evaluate the starting solution yielded by DA.

Transformation into the General ConFL Problem

Modeling as a Directed Steiner Tree Problem
with Unit Degree Constraint on the Root Node

Objective

•  Establish a common framework for a family of related
problems: connected facility location (ConFL), rent or buy
(ROB), Steiner tree star (STS) and General STS (GSTS).

•  Develop an effective heuristic that finds high quality
solutions very rapidly.

Note that these problems are NP-complete

Demand nodes

Potential Facilities

Potential Steiner Nodes

Feasible Solution

Customer Node Dual-Role Node

Zero cost
links

Facility Node

Zero cost
links

The transformation for each problem is based on node
splitting strategy and arcs are added arcs accordingly.

•  Create an artificial node (root node)
with unit degree constraint.

•  Create a directed arc from the root
node and every facility node with cost
equal to the fixed cost of the hub.

•  Replace each edge by two directed
arcs such that the cost of the arc equals
the cost of the edge plus the facility
opening cost (if any) at the end node.

Artificia
l
Root

General Connected Facility Location Problem

Demand nodes

Potential Facilities

Feasible Solution

There are three disjoint sets of nodes: demand nodes,
potential facility nodes, and potential Steiner nodes.

Facility nodes ALWAYS incur a cost.

Example

Example

We tested our heuristic on randomly generate problems on a
100x100 grid with various characteristics.

In addition, we used large-scale instances and compare
results yielded by a variable neighborhood search (VNS)
heuristic (Ljubic 2007).

Improvement Steps significantly reduce the upper bound.
Does Dual-Ascent yield “good” starting solutions?

Heuristic Approach

General
ConFL

ConFL
ROB
STS

GSTS

Directed Steiner
Tree Problem
with unit degree
constraint on
the root node

Dual-Ascent +
Local Search

High Quality
Solutions

Potential Steiner Nodes

Summary of Results

• Our dual-based
solutions are
consistently good for
all four problems

• ConFL is the hardest
problem in the family

•  Sparsity between demand
nodes and facilities yields
harder instances

• Our dual-based heuristic
obtained better solutions
than the VNS heuristic for
most large-scale instances

