

Optimal Resource Allocation for CDMA Networks Based on Source Coders Adaptation with Application to MPEG4 FGS

By Andres Kwasinski and Nariman Farvardin

Communications and Signal Processing Lab

1. $\exists \lambda \ge 0$ such that the solution $B^*(\lambda)$ to the constrained problem min H(B), subject to $R(B) \leq R_c$

is also the solution to the unconstrained problem $\min \{H(B) + \lambda R(B)\}$

2. Let $D_i(b_i)$ and $\Psi_i(b_i)$ be real-valued functions. Also, $b_i^*(\lambda_k) \triangleq \arg\min\{D_i(b_i) + \lambda_k \Psi_i(b_i)\}$ If $\lambda_2 \ge \lambda_1 > 0$ then $\Psi_i(b_i^*(\lambda_2)) \le \Psi_i(b_i^*(\lambda_1))$, and $R^*(\lambda_2) \le R^*(\lambda_1)$

Algorithm I: Adapt Transmit Bit Rate

Optimal for D-R functions convex and decreasing.

*i*th. incremental distortion associated with call $j:\Delta_i^{(j)} = D_i(q_{i+1}) - D_i(q_i)$

Algorithm II: Adapt Transmit Bit Rate and Target SINR

- Let, at step j, $S^{(j)} = \sum_{i=1}^{N} \Psi_i^{(j)}(r_i)$
- **1.** Initialize $\lambda^{(0)}$ with some positive number and iteration counter m=0.
- 2. Iteration m:

a. Find
$$b_i^*(\lambda^{(m)}), \forall i$$
, by solving $\min_{b_i \in \mathbb{S}^{(i)}} \left\{ D_i(b_i) + \lambda^{(m)} \Psi_i(b_i) \right\}$
b. Update $S^{(m)}$

c. If
$$S^{(m)} > 1 - \varepsilon$$
, update $\lambda^{(m+1)}$ such that $\lambda^{(m+1)} > \lambda^{(m)}$
d. If $S^{(m)} < 1 - \varepsilon$, update $\lambda^{(m+1)}$ such that $\lambda^{(m+1)} < \lambda^{(m)}$

- e. STOP if
 - $S^{(m)}$ is sufficiently close but less than 1ε .
 - $S^{(m)} < 1 \mathcal{E}$ and all allocations corresponds to target minimum distortion.
 - $S^{(m)} > 1 \varepsilon$ and all allocations corresponds to maximum allowable distortion.

Simulation Results

- Sequences: 40 % "Foreman" and 60 % "Akiyo", 30 fps.
- Source Coder: MPEG4 FGS + error resiliency and concealment.
- Channel Coder: RCPC, K=9.

