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Compliant Strain Sensors

* Formed from exfoliated
graphite (EG) and &Mé@
elastomers (e.g., latex). §'§» '

« Strain sensitive
(piezoresistive).

* Applied to surfaces using

spray processes.
« Can be integrated into

Tactile Sensing for Co-Robotics

« Compliant multi-functional skins for
robotics can “sense” contact with other
structures and temperature.

« Large-area compliant skins over padded
robots.

existing structures (e.g.,

flapping wing) .

sensor

Multifunctional Sensing

 Calibrate for both static and dynamic response under a
combination of compression and tension.

* Investigate the performance of the skin with padding
materials .

» Characterize cross-sensitivities of sensing materials for
compensation of environmental conditions.

* Employ electrical impedance tomography (EIT) for
distributed sensing.

* Reduce wiring complexity through reconstruction of the
Internal resistance change from periphery measurements.

* Improve the algorithm for the inverse problem to enhance
image quality of the reconstruction.
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\AAQT ﬂ 7 * Enables bio-inspired robotic control
65 £ principles for manipulation, safety,
j_ ) exploration, and communication.
V v U » Enables humans to work alongside with
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DIC Strain Characterization of Sensing Skins for Robotics

» Use digital image correlation (DIC) to characterize

deformations of compliant robotic structures.

* Provide high resolution full-field deformation

measurements.

* Enable direct quantification of interactions.
* Develop fundamental relationship between sensor

configuration and distributed pressures and geometries
from human contact .
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Manipulation Exploration

" %
e
.|\ 5 -36.8
. N ~ L
iafe ty : 2 ‘ 3 .f“ﬁl.
A v 5 ;
(24 @3 VAN ®

L’;@ [What am | }

touching? Communication

ﬂ-\\ Z NI W ".
N\ \'@ /fAm | bumping } @ - :

AN =) =) into something

Red rectangle stands for tactile sensor, grey stands for robot, green
stands for object, blue stands for human.

Integration

» Readily integrate sensing materials or retrofit onto
any robotic platform.

» Create multifunctional robotic structures with
integrated sensing materials at many length scales
(nanoscale to macroscale).
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